'समानो मन्त्रः समितिः समानी'
UNIVERSITY OF NORTH BENGAL
B.Sc. Honours 1st Semester Examination, 2023

CC1-MATHEMATICS

CALCUlUS and Geometry

(REVISED SYLLABUS 2023)

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks.

GROUP-A

1. Answer any four questions from the following:
(a) Determine the length of one arch of the cycloid $x=a(\theta-\sin \theta), y=a(1-\cos \theta)$.
(b) Show that the curve $y=x^{3}$ has a point of inflexion at $x=0$.
(c) Evaluate $\lim _{x \rightarrow 0} \frac{x e^{x}-\log (1+x)}{x^{2}}$.
(d) Find the points on the curve $y=x^{4}-6 x^{3}+13 x^{2}-10 x+5$, where the tangent is parallel to the line $y=2 x$.
(e) Find the equation of the circle on the sphere $x^{2}+y^{2}+z^{2}=49$ whose centre is at the point $(2,-1,3)$.
(f) If $I_{n}=\int_{0}^{\pi / 4} \tan ^{n} x d x$, show that $I_{n+1}+I_{n-1}=\frac{1}{n}$.

GROUP-B

2. Answer any four questions from the following:
(a) If $y=\sin \left(m \cos ^{-1} \sqrt{x}\right)$, then prove that $\lim _{x \rightarrow 0} \frac{y_{n+1}}{y_{n}}=\frac{4 n^{2}-m^{2}}{4 n+2}$.
(b) Obtain the reduction formula for $\int_{0}^{\pi / 4} \sec ^{n} x d x$ where $n(>1)$ being a positive integer. Using this find the value of $\int_{0}^{\pi / 4} \sec ^{4} x d x$.
(c) Transform the following equation to canonical form and determine the conic represented by it

$$
x^{2}+4 x y+4 y^{2}-20 x+10 y-50=0
$$

(d) Find the equation of the cylinder whose generators are parallel to the straight line $-3 x=6 y=2 z$ and whose guiding curve is the ellipse $2 x^{2}+y^{2}=1, z=0$.
(e) $P S P^{\prime}$ is a focal chord of a conic $\frac{l}{r}=1+e \cos \theta$. Prove that the angle between the tangents at P and P^{\prime} is $\tan ^{-1}\left(\frac{2 e \sin \alpha}{1-e^{2}}\right)$, where α is the angle between the chord and the major axis.
(f) Show that the asymptotes of the curve $x^{2} y^{2}=a^{2}\left(x^{2}+y^{2}\right)$ form a square whose side is of length $2 a$.

GROUP-C

3. Answer any two questions from the following:
(a) (i) Find the envelope of the family of ellipses $\frac{(x-\alpha)^{2}}{a^{2}}+\frac{(y-\beta)^{2}}{b^{2}}=1$, where the parameters α and β are connected by $\frac{\alpha^{2}}{a^{2}}+\frac{\beta^{2}}{b^{2}}=1$.
(ii) If $y=e^{m \sin ^{-1} x}$, prove that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-\left(m^{2}+n^{2}\right) y_{n}=0$. Obtain y_{n} for $x=0$.
(b) (i) Find the area in the first quadrant bounded by $x=0, y=0$ and $\sqrt{x}+\sqrt{y}=\sqrt{a}$.
(ii) Find the volume of revolution generated by the region enclosed by $y=\sqrt{x}$ and the lines $y=1, x=4$ about x-axis.
(c) (i) A tangent to the parabola $y^{2}+4 b x=0$ meets the parabola $y^{2}=4 a x$ at P and Q. Prove that the locus of mid-point of $P Q$ is $y^{2}(2 a+b)=4 a^{2} x$.
(ii) Show that the distance between two points in two dimensional plane does not change under translation and rotation of co-ordinate axes.
(d) (i) Find equations of the generating lines of the hyperboloid $\frac{x^{2}}{4}+\frac{y^{2}}{9}-\frac{z^{2}}{16}=1$ which passes through the point $(2,3,-4)$.
(ii) A sphere of constant radius $2 a$ passes through the origin O and meets the axes in A, B, C. Show that the locus of the centroid of the tetrahedron $O A B C$ is the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.

UNIVERSITY OF NORTH BENGAL
B.Sc. Honours 1st Semester Examination, 2023

CC1-MATHEMATICS

Calculus, Geometry and Differential Equation
 (Old Syllabus 2018)

The figures in the margin indicate full marks.

GROUP-A

1. Answer any four questions from the following:
(a) Determine the length of one arch of the cycloid $x=a(\theta-\sin \theta), y=a(1-\cos \theta)$.
(b) Show that the curve $y=x^{3}$ has a point of inflexion at $x=0$.
(c) Evaluate $\lim _{x \rightarrow 0} \frac{x e^{x}-\log (1+x)}{x^{2}}$.
(d) Solve $\log \left(\frac{d y}{d x}\right)=a x+b y$.
(e) Find the equation of the circle on the sphere $x^{2}+y^{2}+z^{2}=49$ whose centre is at the point $(2,-1,3)$.
(f) If $I_{n}=\int_{0}^{\pi / 4} \tan ^{n} x d x$, show that $I_{n+1}+I_{n-1}=\frac{1}{n}$.

GROUP-B

2. Answer any four questions from the following:
(a) If $y=\sin \left(m \cos ^{-1} \sqrt{x}\right)$, prove that $\lim _{x \rightarrow 0} \frac{y_{n+1}}{y_{n}}=\frac{4 n^{2}-m^{2}}{4 n+2}$.
(b) Obtain the reduction formula for $\int_{0}^{\pi / 4} \sec ^{n} x d x$ where $n(>1)$ being a positive $4+2$ integer. Using this find the value of $\int_{0}^{\pi / 4} \sec ^{4} x d x$.
(c) Transform the following equation to its canonical form and determine the conic represented by it

$$
x^{2}+4 x y+4 y^{2}-20 x+10 y-50=0
$$

(d) Find the equation of the cylinder whose generators are parallel to the straight line $-3 x=6 y=2 z$ and whose guiding curve is the ellipse $2 x^{2}+y^{2}=1, z=0$.
(e) Solve $\frac{d y}{d x}=\sqrt{y-x}$.
(f) Show that the asymptotes of the curve $x^{2} y^{2}=a^{2}\left(x^{2}+y^{2}\right)$ form a square whose side is of length $2 a$.

GROUP-C

3. Answer any two questions from the following:
(a) (i) Find the envelope of the family of ellipses $\frac{(x-\alpha)^{2}}{a^{2}}+\frac{(y-\beta)^{2}}{b^{2}}=1$, where the parameters α and β are connected by $\frac{\alpha^{2}}{a^{2}}+\frac{\beta^{2}}{b^{2}}=1$.
(ii) If $y=e^{m \sin ^{-1} x}$, prove that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-\left(m^{2}+n^{2}\right) y_{n}=0$.
(b) (i) Find the area in the first quadrant bounded by $x=0, y=0$ and $\sqrt{x}+\sqrt{y}=\sqrt{a}$.
(ii) Find the volume of revolution generated by the region enclosed by $y=\sqrt{x}$ and the lines $y=1, x=4$ about x-axis.
(c) (i) Solve $\tan y \frac{d y}{d x}=\sin (x+y)+\sin (x-y)$.
(ii) Solve $\frac{d y}{d x}+2 x y=x y^{3}$.
(d) (i) Find equations of the generating lines of the hyperboloid $\frac{x^{2}}{4}+\frac{y^{2}}{9}-\frac{z^{2}}{16}=1 . \quad 6+(3+3)$ which passes through the point $(2,3,-4)$.
(ii) Show that the distance between two points in two dimensional plane does not change under translation and rotation of co-ordinate axes.
