

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 1st Semester Examination, 2023

CC2-MATHEMATICS

ALGEBRA

(REVISED SYLLABUS 2023 / OLD SYLLABUS 2018)

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks.

GROUP-A

1. Answer any *four* questions:

- (a) If $p \ge q \ge 5$ and p, q are both prime, then prove that $p^2 q^2$ is divisible by 24.
- (b) Find $g \circ f$ if $f: \mathbb{R} \to \mathbb{R}$ be defined by f(x) = |x| + x, $x \in \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ defined by g(x) = |x| x, $x \in \mathbb{R}$.
- (c) Use Euclidean algorithm to find the integer x and y such that 1(72, 92) = 72

$$(72, 92) = 72x + 92y$$

(d) Let
$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 8 & 7 & 2 & 9 & 6 & 5 & 4 & 1 \end{pmatrix}$$
. Express α as a product of 2-cycles. Is

 α an even permutation? Also find α^{-1} .

- (e) If A and B are two square matrices of the same order and A is non-singular, prove that B and ABA^{-1} have same eigen values.
- (f) Find the principal value of $(-1+i)^{1+i}$.

GROUP-B

- 2. Answer any *four* questions:
 - (a) State Sturm's theorem. Using Strum's function to separate the roots of the equation $x^{3} + x^{2} - 2x - 1 = 0$
 - (b) If x is real prove that

$$i \log \frac{x-i}{x+i} = \pi - 2 \tan^{-1} x , \text{ if } x > 0$$
$$= -\pi - 2 \tan^{-1} x , \text{ if } x < 0$$

(c) If a, b, c, d be all positive real numbers and s = a + b + c + d, prove that

$$81 \, abc \le (s-a)(s-b)(s-c)(s-d) \le \frac{81}{256}s^4$$

(d) Find the inverse of the matrix using Cayley-Hamilton theorem

$$\begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$$

- (e) (i) Solve $15x \equiv 9 \pmod{18}$.
 - (ii) Prove that $3 \cdot 4^{n+1} \equiv 3 \pmod{9}$ for all positive integers *n*.
- (f) Solve by Ferrari's method $x^4 + 4x^3 6x^2 + 20x + 8 = 0$.

3+3

6

 $6 \times 4 = 24$

 $3 \times 4 = 12$

GROUP-C

3.		Ans	wer any <i>two</i> questions:	$12 \times 2 = 24$
	(a)	(i)	If α , β , γ be the roots of the equation $x^3 + qx + r = 0$, find the equation	4+1
			whose roots are $\frac{\alpha + \beta}{\alpha\beta}$, $\frac{\beta + \gamma}{\beta\gamma}$, $\frac{\gamma + \alpha}{\gamma\alpha}$ and hence find out the value of $\sum \left(\frac{1}{\alpha} + \frac{1}{\beta} + \frac{2}{\gamma}\right)$.	
		(;;)	$(\alpha p \gamma)$	2⊥1
		(ii)	Obtain the row reduced echelon form of the matrix: $ \begin{pmatrix} 1 & 3 & -2 & -3 \\ 2 & 1 & 4 & -1 \\ 3 & 2 & 1 & 5 \\ 1 & 3 & 5 & 4 \end{pmatrix} $	3+1
			and find the rank.	
		(iii)	Investigate the nature of roots of the equation $5 + 4 + 6 + 2 = 2 + 15 = 6$	3
			$x^{5} - x^{4} + 8x^{2} - 9x - 15 = 0$ by using Descartes' rule of signs.	
	(b)	(i)	Determine the conditions of λ and μ for which the system of equations	6
	(0)	(1)	-4x + 2y - 9z = 2	Ũ
			3x + 4y + z = 5	
			$3x + 4y + \lambda z = \mu$	
			admits of (I) only one solution (II) no solution (III) many solutions.	
		(ii)	State Cauchy-Schwartz inequality for real numbers.	2
		(iii)	Prove that $n ! > 2^n$ for all $n \ge 4$.	4
	(c)	(i)	Let <i>R</i> be a relation on a set <i>A</i> . Define $\tau(R) = R \cup R^{-1} \cup \{(x, x) x \in A\}$. Show that <i>R</i> is reflexive and symmetric.	4
		(ii)	If $\cos \alpha + \cos \beta + \cos \gamma = 0 = \sin \alpha + \sin \beta + \sin \gamma$, prove that	5
			$\sum \cos^2 \alpha = \sum \sin^2 \alpha = \frac{3}{2}$	
			If α , β , γ be the roots of equation $x^3 + px^2 + qx + r = 0$ then find the value of $\sum (\beta + \gamma - \alpha)^3$.	3
	(d)	(i)	For the matrix $A = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{pmatrix}$, find a matrix <i>P</i> such that $P^{-1}AP$ is a	6
			diagonal matrix.	
		(ii)	Solve the equation $x^4 - 12x^3 + 48x^2 - 72x + 35 = 0$ by removing the second te	
		(iii)	Stage Fundamental theorem of arithmetic.	2

1058