UNIVERSITY OF NORTH BENGAL
B.Sc. Honours 1st Semester Examination, 2023

CC2-MATHEMATICS

Algebra

(Revised Syllabus 2023 / Old Syllabus 2018)

Time Allotted: 2 Hours
Full Marks: 60
The figures in the margin indicate full marks.

GROUP-A

1. Answer any four questions:
(a) If $p \geq q \geq 5$ and p, q are both prime, then prove that $p^{2}-q^{2}$ is divisible by 24 .
(b) Find $g \circ f$ if $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=|x|+x, x \in \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ defined by $g(x)=|x|-x, x \in \mathbb{R}$.
(c) Use Euclidean algorithm to find the integer x and y such that

$$
\operatorname{gcd}(72,92)=72 x+92 y
$$

(d) Let $\alpha=\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 8 & 7 & 2 & 9 & 6 & 5 & 4 & 1\end{array}\right)$. Express α as a product of 2-cycles. Is α an even permutation? Also find α^{-1}.
(e) If A and B are two square matrices of the same order and A is non-singular, prove that B and $A B A^{-1}$ have same eigen values.
(f) Find the principal value of $(-1+i)^{1+i}$.

GROUP-B

2. Answer any four questions:
(a) State Sturm's theorem. Using Strum's function to separate the roots of the equation

$$
x^{3}+x^{2}-2 x-1=0
$$

(b) If x is real prove that

$$
\begin{aligned}
i \log \frac{x-i}{x+i} & =\pi-2 \tan ^{-1} x, \quad \text { if } x>0 \\
& =-\pi-2 \tan ^{-1} x, \quad \text { if } x \leq 0
\end{aligned}
$$

(c) If a, b, c, d be all positive real numbers and $s=a+b+c+d$, prove that

$$
81 a b c \leq(s-a)(s-b)(s-c)(s-d) \leq \frac{81}{256} s^{4}
$$

(d) Find the inverse of the matrix using Cayley-Hamilton theorem

$$
\left(\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right)
$$

(e) (i) Solve $15 x \equiv 9(\bmod 18)$.
(ii) Prove that $3 \cdot 4^{n+1} \equiv 3(\bmod 9)$ for all positive integers n.
(f) Solve by Ferrari's method $x^{4}+4 x^{3}-6 x^{2}+20 x+8=0$.

GROUP-C

3. Answer any two questions:
(a) (i) If α, β, γ be the roots of the equation $x^{3}+q x+r=0$, find the equation whose roots are $\frac{\alpha+\beta}{\alpha \beta}, \frac{\beta+\gamma}{\beta \gamma}, \frac{\gamma+\alpha}{\gamma \alpha}$ and hence find out the value of

$$
\sum\left(\frac{1}{\alpha}+\frac{1}{\beta}+\frac{2}{\gamma}\right)
$$

(ii) Obtain the row reduced echelon form of the matrix:

$$
\left(\begin{array}{cccc}
1 & 3 & -2 & -3 \\
2 & 1 & 4 & -1 \\
3 & 2 & 1 & 5 \\
1 & 3 & 5 & 4
\end{array}\right)
$$

and find the rank.
(iii) Investigate the nature of roots of the equation

$$
x^{5}-x^{4}+8 x^{2}-9 x-15=0
$$

by using Descartes' rule of signs.
(b) (i) Determine the conditions of λ and μ for which the system of equations

$$
\begin{aligned}
& -4 x+2 y-9 z=2 \\
& 3 x+4 y+z=5 \\
& 3 x+4 y+\lambda z=\mu
\end{aligned}
$$

admits of (I) only one solution
(II) no solution
(III) many solutions.
(ii) State Cauchy-Schwartz inequality for real numbers.
(iii) Prove that $n!>2^{n}$ for all $n \geq 4$.
(c) (i) Let R be a relation on a set A. Define $\tau(R)=R \cup R^{-1} \cup\{(x, x) / x \in A\}$. Show that R is reflexive and symmetric.
(ii) If $\cos \alpha+\cos \beta+\cos \gamma=0=\sin \alpha+\sin \beta+\sin \gamma$, prove that

$$
\sum \cos ^{2} \alpha=\sum \sin ^{2} \alpha=\frac{3}{2}
$$

(iii) If α, β, γ be the roots of equation $x^{3}+p x^{2}+q x+r=0$ then find the value of $\sum(\beta+\gamma-\alpha)^{3}$.
(d) (i) For the matrix $A=\left(\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right)$, find a matrix P such that $P^{-1} A P$ is a diagonal matrix.
(ii) Solve the equation $x^{4}-12 x^{3}+48 x^{2}-72 x+35=0$ by removing the second term.
(iii) Stage Fundamental theorem of arithmetic.

