

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 1st Semester Examination, 2023

CC1-PHYSICS

MATHEMATICAL PHYSICS-I

Time Allotted: 2 Hours

Full Marks: 40

 $1 \times 5 = 5$

The figures in the margin indicate full marks.

GROUP-A

1. Answer any *five* questions from the following:

- (a) Evaluate: $\lim_{x \to 0} \frac{1 \cos x}{x^2}$
- (b) Determine the order and degree of the following differential equation:

$$\frac{d^4y}{dx^4} + \left(\frac{dy}{dx}\right)^3 + x^2y = 0$$

(c) Find out the integrating factor of the differential equation $\frac{dx}{dy} + 3\frac{x}{y} = \frac{1}{y^2}$.

(d) Evaluate the following integral:

$$\int_{0}^{5} \cos x \,\delta(x-\pi) \,dx$$

- (e) Give an example of a scalar field.
- (f) Write down the expression of the gradient operator in spherical polar coordinates.

(g) Obtain
$$\frac{1}{f(D^2)}\sin\alpha x$$
, where $D = \frac{d}{dx}$.

(h) What is the physical significance of a scalar triple product?

GROUP-B

Answer any *three* questions from the following $5 \times 3 = 15$

2.	(a)	Find out the transformation matrix that describes a rotation by an angle ' θ ' in the anti-clockwise direction about the 'z' axis.	3
	(b)	Show that the above rotation preserves the vector dot product.	2
3.		Evaluate $\iint_{S} \vec{r} \cdot \vec{dS}$ over the unit cube defined by the point (0, 0, 0) and unit	5
		intercepts on the positive <i>x</i> , <i>y</i> and <i>z</i> axis.	
4.	(a)	Prove that: $\vec{\nabla}r^n = nr^{n-1}\hat{r}$	2

(b) Consider the function, f(x) = x |x|. Sketch this function for both positive and a negative values of x. Also check whether f'(x) exists at x = 0.

1

UG/CBCS/B.Sc./Hons./1st Sem./Physics/PHYSCC1/2023

5. (a) Find out the first three terms in the Taylor's expansion of $f(x) = \tan x$ about $x = x$	$=\frac{\pi}{4}$.
--	--------------------

(b) Find out the point on the plane ax + by + cz = p at which the function 3 $f = x^2 + y^2 + z^2$ has a minima. Calculate the value of f(x, y, z) at the minima.

2

3

4

3

6. Obtain the unit vectors \hat{r} , $\hat{\theta}$, $\hat{\phi}$ in terms of \hat{i} , \hat{j} , \hat{k} . Hence show that $\hat{r} \cdot \hat{r} = 1$ and $\hat{\theta} \cdot \hat{\phi} = 0$.

GROUP-C

		Answer any two questions from the following	$10 \times 2 = 20$
7.	(a)	Show that $\vec{\nabla} \cdot (\phi \vec{A}) = \vec{\nabla} \phi \cdot \vec{A} + \phi \vec{\nabla} \cdot \vec{A}$.	2
	(b)	Solve the following differential equation:	4
		$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = x^3 + x$	
	(c)	2% of the items manufactured by a company are found to be defective. What is the probability that there are three defective items in a sample of 100?	4
8.	(a)	Show that the Dirac-Delta function can be represented as a limiting case of the Gaussian function.	3

- (b) Given the coordinate transformation $u_1 = xy$, $2u_1 = x^2 + y^2$, $u_3 = z$. 2+2
 - (i) Show that the coordinate system is not orthogonal.
 - (ii) Find out ds^2 for the system.

(c) Show that
$$df = -(y^2 + xy)dx + x^2dy$$
 is not an exact differential but $(xy^2)^{-1}df$ is. 3

9. (a) Find out the value of P that will make the following vectors coplanar. $\vec{A} = 3\hat{i} + 2\hat{j} + \hat{k}$, $\vec{B} = 3\hat{i} + 4\hat{j} + 5\hat{k}$, $\vec{C} = \hat{i} + \hat{j} - P\hat{k}$

(b) Show that
$$\vec{V} = 3y^4 z^2 \hat{i} + 4x^3 z^2 \hat{j} - 3x^2 y^2 \hat{k}$$
 is a solenoidal vector. 3

- (c) Express line element, area element, and volume element for an orthogonal curvilinear coordinate system.
- 10.(a) Solve the following differential equation:

$$\cos x \frac{dy}{dx} + y \sin x = 1$$

(b) Verify Stoke's theorem for the function $\vec{f} = xy\hat{i} + 2yz\hat{j} + 3zx\hat{k}$ using the triangular shaded area of the figure below:

(c) If $x = r \cos \theta$ and $y = r \sin \theta$, show that $\frac{\partial(x, y)}{\partial(r, \theta)} = r$ and $\frac{\partial(r, \theta)}{\partial(x, y)} = \frac{1}{r}$. 3