UNIVERSITY OF NORTH BENGAL
B.Sc. Honours 1st Semester Examination, 2023

CC1-Physics

Mathematical Physics-I
Time Allotted: 2 Hours
Full Marks: 40
The figures in the margin indicate full marks.

GROUP-A

1. Answer any five questions from the following:
(a) Evaluate: $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$
(b) Determine the order and degree of the following differential equation:

$$
\frac{d^{4} y}{d x^{4}}+\left(\frac{d y}{d x}\right)^{3}+x^{2} y=0
$$

(c) Find out the integrating factor of the differential equation $\frac{d x}{d y}+3 \frac{x}{y}=\frac{1}{y^{2}}$.
(d) Evaluate the following integral:

$$
\int_{0}^{5} \cos x \delta(x-\pi) d x
$$

(e) Give an example of a scalar field.
(f) Write down the expression of the gradient operator in spherical polar coordinates.
(g) Obtain $\frac{1}{f\left(D^{2}\right)} \sin \alpha x$, where $D=\frac{d}{d x}$.
(h) What is the physical significance of a scalar triple product?

GROUP-B

Answer any three questions from the following
2. (a) Find out the transformation matrix that describes a rotation by an angle ' θ ' in the anti-clockwise direction about the ' z ' axis.
(b) Show that the above rotation preserves the vector dot product.
3. Evaluate $\iint_{S} \vec{r} \cdot \overrightarrow{d S}$ over the unit cube defined by the point $(0,0,0)$ and unit intercepts on the positive x, y and z axis.
4. (a) Prove that: $\vec{\nabla} r^{n}=n r^{n-1} \hat{r}$
(b) Consider the function, $f(x)=x|x|$. Sketch this function for both positive and negative values of x. Also check whether $f^{\prime}(x)$ exists at $x=0$.

UG/CBCS/B.Sc./Hons./1st Sem./Physics/PHYSCC1/2023

5. (a) Find out the first three terms in the Taylor's expansion of $f(x)=\tan x$ about $x=\frac{\pi}{4}$.
(b) Find out the point on the plane $a x+b y+c z=p$ at which the function $f=x^{2}+y^{2}+z^{2}$ has a minima. Calculate the value of $f(x, y, z)$ at the minima.
6. Obtain the unit vectors $\hat{r}, \hat{\theta}, \hat{\phi}$ in terms of $\hat{i}, \hat{j}, \hat{k}$. Hence show that $\hat{r} \cdot \hat{r}=1$ and $\hat{\theta} \cdot \hat{\phi}=0$.

GROUP-C

Answer any two questions from the following

7. (a) Show that $\vec{\nabla} \cdot(\phi \vec{A})=\vec{\nabla} \phi \cdot \vec{A}+\vec{\phi} \vec{\nabla} \cdot \vec{A}$.
(b) Solve the following differential equation:

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=x^{3}+x
$$

(c) 2% of the items manufactured by a company are found to be defective. What is the probability that there are three defective items in a sample of 100 ?
8. (a) Show that the Dirac-Delta function can be represented as a limiting case of the
(b) Given the coordinate transformation $u_{1}=x y, 2 u_{1}=x^{2}+y^{2}, u_{3}=z$.
(i) Show that the coordinate system is not orthogonal.
(ii) Find out $d s^{2}$ for the system.
(c) Show that $d f=-\left(y^{2}+x y\right) d x+x^{2} d y$ is not an exact differential but $\left(x y^{2}\right)^{-1} d f$ is.
9. (a) Find out the value of P that will make the following vectors coplanar.

$$
\vec{A}=3 \hat{i}+2 \hat{j}+\hat{k}, \vec{B}=3 \hat{i}+4 \hat{j}+5 \hat{k}, \vec{C}=\hat{i}+\hat{j}-P \hat{k}
$$

(b) Show that $\vec{V}=3 y^{4} z^{2} \hat{i}+4 x^{3} z^{2} \hat{j}-3 x^{2} y^{2} \hat{k}$ is a solenoidal vector.
(c) Express line element, area element, and volume element for an orthogonal curvilinear coordinate system.
10.(a) Solve the following differential equation:

$$
\cos x \frac{d y}{d x}+y \sin x=1
$$

(b) Verify Stoke's theorem for the function $\vec{f}=x y \hat{i}+2 y z \hat{j}+3 z x \hat{k}$ using the triangular shaded area of the figure below:

(c) If $x=r \cos \theta$ and $y=r \sin \theta$, show that $\frac{\partial(x, y)}{\partial(r, \theta)}=r$ and $\frac{\partial(r, \theta)}{\partial(x, y)}=\frac{1}{r}$.

