

UNIVERSITY OF NORTH BENGAL B.Sc. Honours 1st Semester Examination, 2023

CC2-PHYSICS

MECHANICS

Time Allotted: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks.

GROUP-A

1. Answer any *five* questions from the following:

- (a) State the principle of conservation of angular momentum.
- (b) Write down any two relations between the elastic constants.
- (c) What is the amount of angular deflection of a projectile shot horizontally at the north pole having a time of flight of 100 sec?
- (d) A particle is subjected to a linear restoring force $\vec{F} = -k\vec{x}$ (k is constant). Find out the potential energy.
- (e) Write down the Poiseuille's formula for fluid motion.
- (f) State the condition under which the orbit of a planet will be hyperbolic.
- (g) What do you mean by massless particles? Give examples.
- (h) Does the Lorentz force remain invariant under the Galilean transformation?

GROUP-B

Answer any three questions from the following	$5 \times 3 = 15$
2. (a) Determine the time-average of the total energy for a single harmonic motion.	3
(b) Distinguish between the transient and steady states for oscillators.	2
3. (a) Explain the concept of time dilation and obtain the expression for it for a moving system.	3
(b) Find out the change in length of a rod of length 'l' along the x-axis and moving with a velocity of $0.85c$ relative to a stationary observer, where c is the velocity of light and $l = 2$ cm.	2
4. (a) Compare the gravitational potential at the centre and the surface of a spherical shell.	2
(b) For a solid sphere, draw the graph showing the variation of the gravitational potential and the field with distance.	3

1

 $1 \times 5 = 5$

5.		Show that the total energy of a system of particles moving under the action of a central force is conserved.	5
6.	(a)	Two particles of mass m_1 and m_2 connected by a massless string are at a distance x apart. Find out the moment of inertia of this system a about an axis passing through the C. M. and perpendicular to the line joining the particles.	3
	(b)	What is Reynold's number? Write down its significance.	2
		GROUP-C	
		Answer any two questions from the following	$10 \times 2 = 20$
7.	(a)	Derive Poiseuille's equation for the steady flow of an incompressible viscous liquid, through a horizontal capillary of uniform cross section. What are the major corrections that should be applied to this formula for a more realistic system?	6+1
	(b)	A body of mass <i>m</i> at rest disintegrates into two pieces of masses m_1 and m_2 . Show that their energies E_1 and E_2 will have a ratio like, $E_1: E_2 = m_2: m_1$.	3
8.	(a)	State Einstein's postulates of special theory of relativity.	2
	(b)	Derive the Lorentz space-time transformation formulae by using these postulates.	5
	(c)	On the basis of Lorentz transformation discuss the phenomenon of length contraction.	3
9.	(a)	Write down the expression for the differential equation of motion of a particle under damped oscillation.	2
	(b)	Solve the differential equation for all possible types of damping.	6
	(c)	Estimate the energy lost per cycle of oscillation.	2
10	.(a)	Show that $\frac{dT}{dt} = \vec{F} \cdot \vec{v}$, where <i>T</i> is the kinetic energy, \vec{F} and \vec{v} are respectively the force and velocity of a particle.	3
	(b)	For a conservative force field $\vec{F}(r)$, prove that $\vec{\nabla} \times \vec{F}(r) = 0$.	2
	(c)	Three particles each of mass 'm' are placed at $(a, 0, 0)$, $(0, a, 0)$ and $(0, 0, a)$. Set up the principal axes for the system and calculate the principle moment of inertia.	5

____X____