UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 1st Semester Examination, 2023

CC2-Physics
 Mechanics

Full Marks: 40
The figures in the margin indicate full marks.

GROUP-A

1. Answer any five questions from the following:
$1 \times 5=5$
(a) State the principle of conservation of angular momentum.
(b) Write down any two relations between the elastic constants.
(c) What is the amount of angular deflection of a projectile shot horizontally at the north pole having a time of flight of 100 sec ?
(d) A particle is subjected to a linear restoring force $\vec{F}=-k \vec{x}$ (k is constant). Find out the potential energy.
(e) Write down the Poiseuille's formula for fluid motion.
(f) State the condition under which the orbit of a planet will be hyperbolic.
(g) What do you mean by massless particles? Give examples.
(h) Does the Lorentz force remain invariant under the Galilean transformation?

GROUP-B

Answer any three questions from the following

$5 \times 3=15$
2. (a) Determine the time-average of the total energy for a single harmonic motion.
(b) Distinguish between the transient and steady states for oscillators.
3. (a) Explain the concept of time dilation and obtain the expression for it for a moving system.
(b) Find out the change in length of a rod of length ' l ' along the x-axis and moving with a velocity of $0.85 c$ relative to a stationary observer, where c is the velocity of light and $l=2 \mathrm{~cm}$.
4. (a) Compare the gravitational potential at the centre and the surface of a spherical shell.
(b) For a solid sphere, draw the graph showing the variation of the gravitational potential and the field with distance.
5. Show that the total energy of a system of particles moving under the action of a central force is conserved.
6. (a) Two particles of mass m_{1} and m_{2} connected by a massless string are at a distance x apart. Find out the moment of inertia of this system a about an axis passing through the C. M. and perpendicular to the line joining the particles.
(b) What is Reynold's number? Write down its significance.

GROUP-C

Answer any two questions from the following

7. (a) Derive Poiseuille's equation for the steady flow of an incompressible viscous liquid, through a horizontal capillary of uniform cross section. What are the major corrections that should be applied to this formula for a more realistic system?
(b) A body of mass m at rest disintegrates into two pieces of masses m_{1} and m_{2}.

Show that their energies E_{1} and E_{2} will have a ratio like, $E_{1}: E_{2}=m_{2}: m_{1}$.
8. (a) State Einstein's postulates of special theory of relativity.

2
(b) Derive the Lorentz space-time transformation formulae by using these postulates.
(c) On the basis of Lorentz transformation discuss the phenomenon of length contraction.
9. (a) Write down the expression for the differential equation of motion of a particle under damped oscillation.
(b) Solve the differential equation for all possible types of damping. 6
(c) Estimate the energy lost per cycle of oscillation.
10.(a) Show that $\frac{d T}{d t}=\vec{F} \cdot \vec{v}$, where T is the kinetic energy, \vec{F} and \vec{v} are respectively the force and velocity of a particle.
(b) For a conservative force field $\vec{F}(r)$, prove that $\vec{\nabla} \times \vec{F}(r)=0$. 2
(c) Three particles each of mass ' m ' are placed at $(a, 0,0),(0, a, 0)$ and $(0,0, a)$. Set 5 up the principal axes for the system and calculate the principle moment of inertia.

