

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 1st Semester Examination, 2023

GE1-P1-PHYSICS

Time Allotted: 2 Hours

Full Marks: 40

 $1 \times 5 = 5$

The figures in the margin indicate full marks.

The question paper contains GE-1A and GE-1B. Candidates are required to answer any *one* from the *two* courses and they should mention it clearly on the Answer Book.

GE-1A

MECHANICS

GROUP-A

- 1. Answer any *five* questions from following:
 - (a) What is Solenoid Vector?
 - (b) What is epoch of a SHM?
 - (c) What do you mean by elastic limit?
 - (d) If $\vec{A} = 2\hat{i} 3\hat{j} + 6\hat{k}$ and $\vec{B} = a\hat{i} + \hat{j} + \hat{k}$ are perpendicular to each others, then find the value of *a*.
 - (e) Draw the graph how Gravity of hollow sphere is changed with distance.
 - (f) Write down the unit and dimension of strain.
 - (g) Define the term initial frame of reference.
 - (h) Define centre of mass of a system.

GROUP-B

Answer any *three* questions from the following $5 \times 3 = 15$

- 2. What is S.H.M.? Show that total energy of a S.H.M. is conserved. 1+4
- 3. (a) If $|\vec{A} + \vec{B}| = |\vec{A} \vec{B}|$, prove that \vec{A} and \vec{B} are perpendicular to each other. $2\frac{1}{2}+2\frac{1}{2}$
 - (b) Find $\vec{\nabla} \cdot \vec{A}$ at point (1, 1, 1), where $\vec{A} = x^2 y \hat{i} 2y^3 z^2 \hat{j} + xy^2 z \hat{k}$.
- 4. (a) Weightlessness in Artificial Satellite. Explain.3+2
 - (b) Why Noble gases are not found in Earth?

Turn Over

1

UG/CBCS/B.Sc./Hons./1st Sem./Physics/PHYSGE1/2023

5.		Solve the following differential equations.	5		
		$y^2 y^1 - x^2 = 0$ given that $y(1) = 0$			
6.	(a)	Write down the principle of conservation of angular momentum.	3+2		
	(b)	Establish the relation between torque and angular acceleration.			
		GROUP-C			
		Answer any two questions from the following	$10 \times 2 = 20$		
7.	(a)	Establish the differential equation of S.H.M. and find the solution of the equation.	(2+4)+4		
	(b)	Show that a particle executing simple harmonic motion obeys the relationship $\omega^2 v^2 + f^2 = a^2 \omega^2$ where <i>a</i> , <i>w</i> , <i>v</i> , <i>f</i> are amplitude, frequency of the oscillator and velocity and acceleration of the particle respectively.			
8.	(a)	Define Young's Modulus. Find its dimension.	(2+1)+4+3		
	(b)	Deduce an expression for the amount of energy stored in an elastic body due to longitudinal strain.			
	(c)	If radius of a cylindrical wire is made to be half and the length has been made double, calculate the change in Young's modulus of the wire.			
9.	(a)	Prove that $\vec{\nabla} \times \vec{\nabla} \times \vec{A} = \text{grad} \operatorname{div} \vec{A} - \nabla^2 A$.	4+4+2		
	(b)	Show that the vectors $\vec{A} = 3\hat{i} - 2\hat{j} + \hat{k}$, $\vec{B} = \hat{i} - 3\hat{j} + 5\hat{k}$ and $\vec{C} = 2\hat{i} + \hat{j} - 4\hat{k}$ form a right angled triangle.			
	(c)	What do you mean by scalar triple product?			
10).(a)	State Kepler's laws of planetary motion.	2+3+5		
	(b)	Show that areal velocity of a particle moving in a central force field is always constant.			
	(c)	Determine the gravitational field at a point (i) outside (ii) inside			
		(iii) on the surface of a hollow and thin spherical shell.			
		GE-1B			
GROUP-A					
1.		Answer any <i>five</i> questions from the following:	$1 \times 5 = 5$		
	(a)	What is the dimension of Boltzmann constant?			
	(b)	Pauli's exclusion principle applies to the particles which follow:			

- (i) MB-statistics (ii) BE-statistics
 - (iii) F-D statistics (iv) Both BE and FD statistics

2

UG/CBCS/B.Sc./Hons./1st Sem./Physics/PHYSGE1/2023

- (c) Define quasi-static process.
- (d) What is ultraviolet catastrophe in Blackbody radiation?
- (e) What do you understand by principle of equipartition of energy?
- (f) What is reflection coefficient for a perfect blackbody?
- (g) Define Fermi temperature.
- (h) Name two particles which follows Bose-Einstein statistics.

GROUP-B

	Answer any three questions from the following	$5 \times 3 = 15$
2.	Calculate the efficiency of Carnot's engine.	5
3.	(a) Show that an adiabatic curve is steeper then the isothermal curve.	3
	(b) What do you understand by isentropic process? Give one example.	2
4.	Find the number of possible arrangement of 3-particles in two states assuming the particles obey	5
	(i) MB-statistics (ii) BE-statistics, and (iii) FD-statistics	
5.	(a) Write down the Maxwell's velocity distribution law and show the graphical representation.	3
	(b) Calculate the most probable speed from the distribution law.	2
6.	(a) Define entropy of a system.	1
	(b) 50 gm of water of 50°C is mixed with 100 gm of ice. Calculate the temperature of the mixture.	4

GROUP-C

Answer any two questions from the following	$10 \times 2 = 20$
7. (a) Show that heat cannot flow from a colder body to a hotter body naturally	y. 3
(b) The temperature of a blackbody is 5450 K. Find out the w corresponding to maximum energy in radiated spectrum.	vavelength 3
(c) Calculate the degrees of freedom of a linear triatomic molecule.	1
(d) At what temperature will average speed of molecule of hydrogen gas the average speed of oxygen at 300 K.	be double 3
8. (a) Explain the first law of thermodynamics. What are the limitations of this	s law? 2+2
(b) Show that the change in entropy in reversible process vanishes.	3
(c) Using kinetic theory of gas, show that $P = \frac{1}{3}\rho c^2$, where ρ = density	of the gas 3
c = rms speed.	

UG/CBCS/B.Sc./Hons./1st Sem./Physics/PHYSGE1/2023

- 9. (a) Derive Maxwell's thermodynamic relation $\left(\frac{\partial T}{\partial V}\right)_S = -\left(\frac{\partial P}{\partial S}\right)_V$. 5
 - (b) Show that for van der Waal's gas

$$C_P - C_V = R \left(1 + \frac{2a}{RTV} \right)$$

Where, symbols have their usual meaning.

- 10.(a) What is electron gas? Give example.
 - (b) Show that from the probability distribution of BE and FD statistics, the MB statistics is the limiting case of both BE and FD statistics.
 - (c) Calculate the probability of finding an electron with energy 6 eV in an electron gas at 1000°C when the Fermi energy of the gas is 6 eV.

__×____

1081

3

3

4

5