

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 3rd Semester Examination, 2023

CC5-MATHEMATICS

Theory of Real Functions and Introduction to Metric Space (Revised Syllabus 2023 / Old Syllabus 2018)

Time Allotted: 2 Hours
Full Marks: 60
The figures in the margin indicate full marks.

GROUP-A

1. Answer any four questions:
(a) Evaluate $\lim _{x \rightarrow 3}\left([x]-\left[\frac{x}{3}\right]\right)$.
(b) If a function $f:[0,1] \rightarrow \mathbb{R}$ is continuous on $[0,1]$ and f assumes only rational values on $[0,1]$, then prove that f is a constant.
(c) Discuss the applicability of M.V.T. for $f(x)=|x|$ in $[-1,1]$ and $[0,1]$.
(d) Is the function $f(x)=\frac{x}{x+1}$ uniformly continuous for $x \in[0,2]$? Justify your answer.
(e) Prove that the intersection of two open sets in a metric space is open.
(f) For a subset A of a metric space (X, d), show that $\operatorname{Int}(A)=X-\operatorname{cl}(X-A)$.

GROUP-B

2. Answer any four questions:
(a) If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then show that f attains its supremum and infimum on $[a, b]$.
(b) Suppose $f(x)$ is a function satisfying the conditions:
(i) $f(0)=2, f(1)=1$
(ii) f has a minimum value at $x=\frac{1}{2}$
(iii) $f^{\prime}(x)=2 a x+b$ for all x.

Determine the constants a, b and the function $f(x)$.
(c) State and prove Rolle's Theorem.
(d) If $f:(a, b) \rightarrow \mathbb{R}$ is continuous, then prove that f is uniformly continuous on (a, b) iff $\lim _{x \rightarrow a^{+}} f(x)$ and $\lim _{x \rightarrow b^{-}} f(x)$ exists finitely.
(e) For a metric space (X, d), show that $d^{*}(x, y)=\frac{d(x, y)}{1+d(x, y)}, \forall x, y \in X$ is a bounded metric on X.
(f) If $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are two sequences in a metric space (X, d) such that $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$, then prove that $d\left(x_{n}, y_{n}\right) \rightarrow d(x, y)$.

GROUP-C

3. Answer any two questions:
(a) (i) Suppose $g: D \rightarrow \mathbb{R}$ be a function on $D \subseteq \mathbb{R}$ and $(c, \infty) \subset D$ for some $c \in \mathbb{R}$. Prove that $\lim _{x \rightarrow \infty} g(x)=l, l \in \mathbb{R}$ iff $\lim _{x \rightarrow 0^{+}} g\left(\frac{1}{x}\right)=l$.
(ii) Using Cauchy's principle prove that $\lim _{x \rightarrow 0} \cos \frac{1}{x}$ does not exist.
(b) (i) A function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$ and f is continuous at 0 . Prove that f is continuous at every $c \in \mathbb{R}$. Also deduce that $f(x)=k x$ for all $x \in \mathbb{R}$ and for some $k \in \mathbb{R}$.
(ii) A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=x, x \in \mathbb{Q} ; f(x)=0, x \in \mathbb{R} \backslash \mathbb{Q}$. Show that f is continuous at 0 and f has a discontinuity of the 2 nd kind at every other point in \mathbb{R}.
(c) (i) Suppose a function $f:[a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$ and $f^{\prime}(x) \neq 0$ on (a, b). If $f(a)$ and $f(b)$ are of opposite signs, show that there is a unique $x_{0} \in(a, b)$ such that $f\left(x_{0}\right)=0$.
(ii) Find the global maximum and the global minimum of the function f on \mathbb{R}, where $f(x)=\frac{x^{2}-2 x+4}{x^{2}+2 x+4}, x \in \mathbb{R}$.
(d) (i) Consider the space of all sequences of complex numbers and define the function d on X by

$$
d(x, y)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \cdot \frac{\left|x_{n}-y_{n}\right|}{\left(1+\left|x_{n}-y_{n}\right|\right)}, \forall x=\left\{x_{n}\right\}, y=\left\{y_{n}\right\} \in X
$$

Show that (X, d) is a metric space.
(ii) Suppose X be the set of all continuous real valued functions defined on $[0,1]$ and $d(x, y)=\int_{0}^{1}|x(t)-y(t)| d t, x, y \in X$. Show that (X, d) is not complete.

