

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 3rd Semester Examination, 2023

CC5-MATHEMATICS

THEORY OF REAL FUNCTIONS AND INTRODUCTION TO METRIC SPACE

(REVISED SYLLABUS 2023 / OLD SYLLABUS 2018)

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks.

GROUP-A

1.		Answer any <i>four</i> questions:	3×4 = 12	
	(a)	Evaluate $\lim_{x \to 3} \left([x] - \left[\frac{x}{3} \right] \right)$.	3	
	(b)	If a function $f:[0,1] \to \mathbb{R}$ is continuous on [0,1] and f assumes only rational values on [0,1], then prove that f is a constant.	3	
	(c)	Discuss the applicability of M.V.T. for $f(x) = x $ in $[-1, 1]$ and $[0, 1]$.	3	
	(d)	Is the function $f(x) = \frac{x}{x+1}$ uniformly continuous for $x \in [0, 2]$? Justify your answer.	3	
	(e)	Prove that the intersection of two open sets in a metric space is open.	3	
	(f)	For a subset A of a metric space (X, d) , show that $Int(A) = X - cl(X - A)$.	3	
GROUP-B				

2.		Answer any <i>four</i> questions:	$6 \times 4 = 24$
	(a)	If $f:[a,b] \to \mathbb{R}$ is continuous, then show that f attains its supremum and infimum on $[a,b]$.	6
	(b)	Suppose $f(x)$ is a function satisfying the conditions:	6
		(i) $f(0) = 2, f(1) = 1$	
		(ii) f has a minimum value at $x = \frac{1}{2}$	
		(iii) $f'(x) = 2ax + b$ for all x .	
		Determine the constants a, b and the function $f(x)$.	

(c) State and prove Rolle's Theorem.

6

UG/CBCS/B.Sc./Hons./3rd Sem./Mathematics/MATHCC5/Revised & Old/2023

(d) If $f:(a,b) \to \mathbb{R}$ is continuous, then prove that f is uniformly continuous on (a,b) iff $\lim_{x \to a^+} f(x)$ and $\lim_{x \to b^-} f(x)$ exists finitely.

6

- (e) For a metric space (X, d), show that $d^*(x, y) = \frac{d(x, y)}{1 + d(x, y)}, \forall x, y \in X$ is a 6 bounded metric on X.
- (f) If $\{x_n\}$ and $\{y_n\}$ are two sequences in a metric space (X, d) such that $x_n \to x$ 6 and $y_n \to y$, then prove that $d(x_n, y_n) \to d(x, y)$.

GROUP-C

Answer any *two* questions: $12 \times 2 = 24$ 3. Suppose $g: D \to \mathbb{R}$ be a function on $D \subseteq \mathbb{R}$ and $(c, \infty) \subset D$ for some $c \in \mathbb{R}$. (a) (i) 6 Prove that $\lim_{x\to\infty} g(x) = l$, $l \in \mathbb{R}$ iff $\lim_{x\to 0^+} g\left(\frac{1}{x}\right) = l$. (ii) Using Cauchy's principle prove that $\lim_{x\to 0} \cos \frac{1}{x}$ does not exist. 6 (b) (i) A function $f : \mathbb{R} \to \mathbb{R}$ satisfies f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$ and 6 f is continuous at 0. Prove that f is continuous at every $c \in \mathbb{R}$. Also deduce that f(x) = kx for all $x \in \mathbb{R}$ and for some $k \in \mathbb{R}$. (ii) A function $f : \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x, x \in \mathbb{Q}$; $f(x) = 0, x \in \mathbb{R} \setminus \mathbb{Q}$. 6 Show that f is continuous at 0 and f has a discontinuity of the 2nd kind at every other point in \mathbb{R} . Suppose a function $f:[a,b] \to \mathbb{R}$ is continuous on [a,b] and $f'(x) \neq 0$ on 6 (c) (i) (a, b). If f(a) and f(b) are of opposite signs, show that there is a unique $x_0 \in (a, b)$ such that $f(x_0) = 0$. (ii) Find the global maximum and the global minimum of the function f on \mathbb{R} , 6 where $f(x) = \frac{x^2 - 2x + 4}{x^2 + 2x + 4}, x \in \mathbb{R}.$ Consider the space of all sequences of complex numbers and define the (d) (i) 6 function d on X by $d(x, y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \cdot \frac{|x_n - y_n|}{(1 + |x_n - y_n|)}, \ \forall x = \{x_n\}, \ y = \{y_n\} \in X$ Show that (X, d) is a metric space. (ii) Suppose X be the set of all continuous real valued functions defined on 6 [0,1] and $d(x, y) = \int_{0}^{1} |x(t) - y(t)| dt$, $x, y \in X$. Show that (X, d) is not

complete.

-×-