
'समानो मन्त्रः समितिः समानी'
UNIVERSITY OF NORTH BENGAL
B.Sc. Honours 3rd Semester Examination, 2023

CC6-MATHEMATICS

Group Theory-I

(Revised Syllabus 2023 / Old Syllabus 2018)

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks.

GROUP-A

1. Answer any four questions:
(a) List all even permutations of S_{4}.
(b) Give an example of a non-cyclic group each of whose proper subgroups is cyclic.
(c) Let $G=S_{3}$ and $G^{\prime}=\{1,-1\}$ and $\varphi: G \rightarrow G^{\prime}$ is defined by

$$
\varphi(x)=\left\{\begin{aligned}
1, & \text { if } x \text { is an even permutation } \\
-1, & \text { if } x \text { is an odd permutation }
\end{aligned}\right.
$$

then determine $\operatorname{ker} \varphi$.
(d) Find the center of the symmetric group S_{3}.
(e) If in a group $G,(a * b)^{-1}=a^{-1} * b^{-1}$ for all $a, b \in G$, then show that G is a commutative group.
(f) Find the number of generators of the group $\left(\mathbb{Z}_{15},+\right)$.

GROUP-B

2. Answer any four questions:

$$
6 \times 4=24
$$

(a) Prove that every subgroup of a cyclic group is cyclic. 6
(b) Let H and K be two subgroups of a group G. Then show that $H K$ is a subgroup
of G if and only if $H K=K H$.
(c) (i) Show that A_{4} has no subgroup of order 6 .
(ii) Let G be a group of order 28. Show that G has a non-trivial subgroup.
(d) (i) Let H be a subgroup of a group G. Define $N(H)=\left\{g \in G \mid g H g^{-1}=H\right\}$. Show that $N(H)$ is a subgroup of G. Find $N(H)$ if H is normal in G.
(ii) Prove that every group of prime order is cyclic.
(e) Prove that every finite cyclic group of order n is isomorphic to \mathbb{Z}_{n}.
(f) Let $\alpha=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4\end{array}\right)$ and $\beta=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 3 & 5 & 1\end{array}\right)$ in S_{5}. Find a permutation 6 γ in S_{5} such that $\alpha \gamma=\beta$.

GROUP-C

3. Answer any two questions:
(a) (i) Prove that in a cyclic group of even order, there is exactly one element of order 2.
(ii) Let $G=\langle a\rangle$ be an infinite cyclic group. Show that G has only two generators.
(iii) Prove that the group $4 \mathbb{Z} / 12 \mathbb{Z} \simeq \mathbb{Z}_{3}$.
(iv) Find all normal subgroups of S_{4}.
(b) (i) Let G be a group of order 15 and A and B are subgroups of G of order 5 and 3, respectively. Show that $G=A B$.
(ii) Prove that a finite semigroup $(S, *)$ is a group if and only if $(S, *)$ satisfies the cancellation laws (i.e., $a * c=b * c$ implies $a=b$ and $c * a=c * b$ implies $a=b$ for all $a, b, c \in S$).
(iii) State second isomorphism theorem for groups.
(c) (i) Let H be a subgroup of a group G. Prove that any two left cosets of H in G are either identical or they have no common element.
(ii) Let H be a subgroup of a group G. If $x^{2} \in H$ for all $x \in G$, then prove that H is a normal subgroup of G and G / H is commutative.
(iii) Find all subgroups of $\mathbb{Z} / 21 \mathbb{Z}$.
(d) (i) Show that every group of order 14 contains only 6 elements of order 7.
(ii) Let X be a non-empty set and $P(X)$ be the power set of X. Examine if $P(X)$ is a group under the composition * defined by

$$
A * B=A \Delta B=(A \backslash B) \cup(B \backslash A), \quad \forall A, B \in P(X)
$$

(iii) Show that $(\mathbb{Z},+)$ and $(\mathbb{Q},+)$ are not isomorphic.

