

'समानो मन्त्रः समितिः समानी' UNIVERSITY OF NORTH BENGAL B.Sc. Honours 3rd Semester Examination, 2023

CC6-MATHEMATICS

GROUP THEORY-I

(REVISED SYLLABUS 2023 / OLD SYLLABUS 2018)

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks.

GROUP-A

- 1. Answer any *four* questions:
 - (a) List all even permutations of S_4 .
 - (b) Give an example of a non-cyclic group each of whose proper subgroups is cyclic.
 - (c) Let $G = S_3$ and $G' = \{1, -1\}$ and $\varphi : G \to G'$ is defined by

 $\varphi(x) = \begin{cases} 1 & \text{, if } x \text{ is an even permutation} \\ -1 & \text{, if } x \text{ is an odd permutation} \end{cases}$

then determine $\ker \varphi$.

- (d) Find the center of the symmetric group S_3 .
- (e) If in a group G, $(a * b)^{-1} = a^{-1} * b^{-1}$ for all $a, b \in G$, then show that G is a commutative group.
- (f) Find the number of generators of the group $(\mathbb{Z}_{15}, +)$.

GROUP-B

2.	А	Answer any <i>four</i> questions:	
	(a) P	rove that every subgroup of a cyclic group is cyclic.	6
	(b) L o	Let H and K be two subgroups of a group G. Then show that HK is a subgroup f G if and only if $HK = KH$.	6
	(c) (i) Show that A_4 has no subgroup of order 6.	4
	(i	i) Let G be a group of order 28. Show that G has a non-trivial subgroup.	2

 $3 \times 4 = 12$

UG/CBCS/B.Sc./Hons./3rd Sem./Mathematics/MATHCC6/Revised & Old/2023

(d) (i) Let *H* be a subgroup of a group *G*. Define $N(H) = \{g \in G \mid gHg^{-1} = H\}$. 2+2 Show that N(H) is a subgroup of *G*. Find N(H) if *H* is normal in *G*.

- (ii) Prove that every group of prime order is cyclic. 2
- (e) Prove that every finite cyclic group of order n is isomorphic to \mathbb{Z}_n . 6

(f) Let
$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{pmatrix}$$
 and $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 3 & 5 & 1 \end{pmatrix}$ in S_5 . Find a permutation 6
 γ in S_5 such that $\alpha \gamma = \beta$.

GROUP-C

3.		Answer any <i>two</i> questions:		
	(a)	(i)	Prove that in a cyclic group of even order, there is exactly one element of order 2.	3
		(ii)	Let $G = \langle a \rangle$ be an infinite cyclic group. Show that G has only two generators.	3
		(iii)	Prove that the group $4\mathbb{Z}/12\mathbb{Z} \simeq \mathbb{Z}_3$.	3
		(iv)	Find all normal subgroups of S_4 .	3
	(b)	(i)	Let G be a group of order 15 and A and B are subgroups of G of order 5 and 3, respectively. Show that $G = AB$.	4
		(ii)	Prove that a finite semigroup $(S, *)$ is a group if and only if $(S, *)$ satisfies the cancellation laws (i.e., $a * c = b * c$ implies $a = b$ and $c * a = c * b$ implies $a = b$ for all $a, b, c \in S$).	6
		(iii)	State second isomorphism theorem for groups.	2
	(c)	(i)	Let H be a subgroup of a group G . Prove that any two left cosets of H in G are either identical or they have no common element.	4
		(ii)	Let <i>H</i> be a subgroup of a group <i>G</i> . If $x^2 \in H$ for all $x \in G$, then prove that <i>H</i> is a normal subgroup of <i>G</i> and <i>G</i> / <i>H</i> is commutative.	5
		(iii)	Find all subgroups of $\mathbb{Z}/21\mathbb{Z}$.	3
	(d)	(i)	Show that every group of order 14 contains only 6 elements of order 7.	4
		(ii)	Let X be a non-empty set and $P(X)$ be the power set of X. Examine if $P(X)$ is a group under the composition $*$ defined by	6
			$A * B = A \Delta B = (A \setminus B) \cup (B \setminus A), \forall A, B \in P(X)$	
		(iii)	Show that $(\mathbb{Z}, +)$ and $(\mathbb{Q}, +)$ are not isomorphic.	2

_×__