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UNIVERSITY OF NORTH BENGAL 
B.Sc. Honours 3rd Semester Examination, 2023 

CC7-MATHEMATICS 
RIEMANN INTEGRATION AND SERIES OF FUNCTIONS 

(REVISED SYLLABUS 2023 / OLD SYLLABUS 2018) 
Time Allotted: 2 Hours Full Marks: 60 

The figures in the margin indicate full marks.

 GROUP-A  

1. Answer any four questions: 3×4 = 12 

(a) Examine the uniform convergence of the sequence of functions   nnf   , where 
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(b) A function f  is defined by 
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Show that f  is continuous for any x ℝ. 
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(c) Prove that,  
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where  represents beta function. 
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(d) Examine the convergence of  
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(e) Find the Fourier coefficients for the function ||)( xxf  , in   x . 3 

(f) Evaluate the integral dxxx
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 GROUP-B  

 Answer any four questions 6×4 = 24 

2. Test the convergence of the improper integral 
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3. Expand the periodic function 2)( xxf  , lx 0  of period l, in a series of cosines 
only and hence deduce that 
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4.  Assuming the power series expansion for 
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Obtain the power series expansion for x1sin  and deduce that 
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5. Let D ℝ and n ℕ, Dfn : ℝ be continuous functions. If the sequence  nf  be 

uniformly convergent on D to a function  f , then prove that  f  is continuous on D. 
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6. Show that 
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7. State and prove Riemann-Lebesgue Lemma. 6 
   

 GROUP-C  

 Answer any two questions 12×2 = 24 

8.  (a) Show that 
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  according as a is positive or zero or negative. 6 

(b) Prove that 
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9.  (a) Starting from the power series expansion of 
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x
 with proper justification, 

show that 
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Hence deduce that 
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(b) Show that, when  x0  
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10.(a) Prove that a bounded function f  is integrable in ],[ ba  if the set of its points of 
discontinuity has a finite number of limit points. 
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(b) Define f on ],[ ba  as follows: 
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where qp,  are relatively prime integers and 0)( xf  elsewhere, then show that f  
is Riemann integrable on ],[ ba . 
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11.(a) Let 
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Show that at 0x , 
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(b) Find the Fourier series of the periodic function f  with period 2  defined as follows: 
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What is the sum of the series at  5,4,,0 x ? 
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