

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 3rd Semester Examination, 2023

CC7-MATHEMATICS

RIEMANN INTEGRATION AND SERIES OF FUNCTIONS

(REVISED SYLLABUS 2023 / OLD SYLLABUS 2018)

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks.

GROUP-A

1. Answer any *four* questions: $3 \times 4 = 12$ (a) Examine the uniform convergence of the sequence of functions $\{f_n\}_{n \in \mathbb{N}}$, where3

$$f_n(x) = \frac{nx}{1+n^2x^2} \quad , \quad x \ge 0$$

(b) A function f is defined by
$$f(x) = \sum_{n=1}^{\infty} \frac{\cos nx}{10^n}$$
, $x \in \mathbb{R}$ 3

Show that f is continuous for any $x \in \mathbb{R}$.

(c) Prove that,
$$\mathcal{B}(x, y) = 2 \int_{0}^{\pi/2} (\sin t)^{2x-1} (\cos t)^{2y-1} dt$$
, 3

where \mathcal{B} represents beta function.

(d) Examine the convergence of
$$\int_{1}^{\infty} \frac{dx}{(1+x)\sqrt{x}}.$$
 3

(e) Find the Fourier coefficients for the function
$$f(x) = |x|$$
, in $-\pi \le x \le \pi$. 3

(f) Evaluate the integral
$$\int_{-2}^{2} ([x^2] + |x|) dx$$
, where $[x]$ = greatest integer $\leq x$. 3

GROUP-B

Answer any four questions $6 \times 4 = 24$

- 2. Test the convergence of the improper integral $\int_{0}^{\infty} \frac{\sin x^{m}}{x^{n}} dx$. 6
- 3. Expand the periodic function $f(x) = x^2$, $0 \le x \le l$ of period *l*, in a series of cosines 6 only and hence deduce that

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$$

4. Assuming the power series expansion for $\frac{1}{\sqrt{1-x^2}}$ as $\frac{1}{\sqrt{1-x^2}} = 1 + \frac{x^2}{2} + \frac{1 \cdot 3}{2 \cdot 4} x^4 + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} x^6 + \dots,$

UG/CBCS/B.Sc./Hons./3rd Sem./Mathematics/MATHCC7/Revised & Old/2023

Obtain the power series expansion for $\sin^{-1} x$ and deduce that

$$1 + \frac{1}{2 \cdot 3} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 7} + \dots = \frac{\pi}{2}$$

5. Let $D \subseteq \mathbb{R}$ and $\forall n \in \mathbb{N}$, $f_n : D \to \mathbb{R}$ be continuous functions. If the sequence $\{f_n\}$ be uniformly convergent on D to a function f, then prove that f is continuous on D.

6. Show that
$$\Gamma\left(n+\frac{1}{2}\right) = \frac{\sqrt{\pi} \Gamma(2n+1)}{2^{2^n} \Gamma(n+1)}$$
 6

7. State and prove Riemann-Lebesgue Lemma.

GROUP-C

Answer any *two* questions $12 \times 2 = 24$

8. (a) Show that
$$\int_{0}^{\infty} \frac{\sin ax}{x} dx = \frac{\pi}{2} \text{ or } 0 \text{ or } -\frac{\pi}{2} \text{ according as } a \text{ is positive or zero or negative.}$$
(b) Prove that
$$\int_{0}^{\infty} \frac{x^{s-1}}{1+x^{t}} dx \text{ is convergent iff } 0 < s < t.$$
6

9. (a) Starting from the power series expansion of $\frac{1}{1+x^2}$ with proper justification, 4+2 show that

$$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots \qquad (-1 \le x \le 1)$$

Hence deduce that $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$

(b) Show that, when $0 < x < \pi$

$$\pi - x = \frac{1}{2}\pi + \frac{\sin 2x}{1} + \frac{\sin 4x}{2} + \frac{\sin 6x}{3} + \dots$$

- 10.(a) Prove that a bounded function f is integrable in [a, b] if the set of its points of discontinuity has a finite number of limit points.
 - (b) Define f on [a, b] as follows:

$$f(x) = \begin{cases} 1/q^2 & , & \text{when } x = \frac{p}{q} \\ 1/q^3 & , & \text{when } x = \sqrt{\frac{p}{q}} \end{cases}$$

where p, q are relatively prime integers and f(x) = 0 elsewhere, then show that f is Riemann integrable on [a, b].

11.(a) Let
$$f_n(x) = \frac{nx}{1+n^2x^2} - \frac{(n-1)x}{1+(n-1)^2x^2}$$
, $x \in [0,1]$.

Show that at x = 0,

$$\frac{d}{dx}\sum f_n(x)\neq \sum \frac{d}{dx}f_n(x)$$

(b) Find the Fourier series of the periodic function f with period 2π defined as follows:

$$f(x) = \begin{cases} 0 & , & \text{for } -\pi < x \le 0 \\ x & , & \text{for } 0 \le x \le \pi \end{cases}$$

What is the sum of the series at $x = 0, \pm \pi, 4\pi, -5\pi$?

6

6

6

6

6