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UNIVERSITY OF NORTH BENGAL 
B.Sc. Honours 3rd Semester Examination, 2023 

SEC1-P1-MATHEMATICS 

(REVISED SYLLABUS 2023) 

Time Allotted: 2 Hours Full Marks: 60 

The figures in the margin indicate full marks.

The question paper contains SEC1A and SEC1B. Candidates are required to answer any one 
from the two SEC1 courses and they should mention it clearly on the Answer Book. 

 SEC1A 

LOGIC AND SETS 

 

 GROUP-A  

1. Answer any four questions: 3×4 = 12 

  (a) Prove that for every positive integer n , nn 2  is always even. 3 

(b) Show that the proposition )()( qpqp   is a tautology. 3 

(c) Find the negation of the following statements: 

(i) )()( yqyxpx   

(ii) )()( yqyxpx   

3 

(d) For any two cardinal numbers   and  , prove that   . 3 

(e) Prove that the set ℚ of rational numbers is countable. 3 

(f) State Zorn’s Lemma for a poset. 3 
   

 GROUP-B  

2. Answer any four questions: 6×4 = 24 

(a) (i) Using well ordering principle of natural numbers, prove that every subset of a 
countable set is countable. 

4 

 (ii) Define a bijection from ℕ to ℤ. 2 

(b) Let qp,  and r  be the following statements: 

 :p  Today is Friday. 

 :q  It is raining. 

 :r  It is hot. 

Write the following compound statements in word: 
(i) rqp ~)~(   

(ii) )(~ prq   

(iii) rqp ~)(   

2+2+2 
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(c) (i) Examine whether the following argument is logically correct: 

 “If I study then I will not fail in Mathematics. If I do not play cards then I 
will study. But I failed in Mathematics. Therefore, I played cards.” 

3 

 (ii) Prove the following logical equivalence using truth table: 
  )(~)(~ qpqp   

3 

(d) (i) Prove that for any positive integer n , 7 divides 212 23   nn . 4 

 (ii) State second principle of Mathematical induction. 2 

(e) Let   and   be two cardinal numbers such that   , where   is infinite. 
Prove that   . 

6 

(f) State the negation, converse and contrapositive of the following statement: 

 ‘Every convergent sequence of real numbers is bounded.’ 

2+2+2 

   

 GROUP-C  

3. Answer any two questions: 12×2 = 24 

  (a) (i) Prove that the set ℝ of real numbers is uncountable. 6 

 (ii) Let S  be the set of all sequences whose elements are the digits 0 and 1. 
Prove that S  is uncountable. 

6 

(b) (i) If   and   are two ordinals then prove that    if and only if    or 
  . 

6 

 (ii) Let  ,  and   be three ordinals. Then prove that   )()( . 6 

(c) (i) Prove the following logical equivalences: 
  pqpqp  )(~)(~ ; 

  )~()~()~(~)( qppqqpqp   

3+3 

 (ii) Prove that the following are tautologies: 

  ))((~ qpp   and pqqp ~))(~)((   

2+4 

(d) (i) Prove the following equivalences: 
  )(~)()()(~ xpAxxpAx  ; 

  ),(~)),(,(~ yxpyxyxpyx   

4+4 

 (ii) Determine the validity of the following argument: 

  All of my friends are musicians. 

  Sourav is my friend. 

  None of my neighbours are musicians. 

  Therefore, Sourav is not my neighbour. 

4 

   

 SEC1B 

GRAPH THEORY 

 

 GROUP-A  

1. Answer any four questions: 3×4 = 12 

 (a) Draw a graph which is both Eulerian and Hamiltonian and justify.  

(b) Justify the statement: “Every tree is a bipartite graph”.  

(c) Find the number of spanning trees in 5K .  
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(d) Prove that any tree (with more than one vertex) must have at least two pendant vertices.  

(e) For which n  does the graph nK  contains an Euler circuit? Explain.  

(f) Give three equivalent definitions of a tree.  

   

 GROUP-B  

2. Answer any four questions: 6×4 = 24 

 (a) Prove that any graph is bipartite if and only if it does not contain any odd cycle. 6 

(b) (i) Prove that the addition of any edge to a tree creates a cycle. 3 

 (ii) What is the maximum number of edge disjoint Hamiltonian cycles on 6K ? 3 

(c) Let ),( EVG   be a simple graph of order n  having k  components. Prove that the 

size (edges) of G  can be atmost ))((
2
1 kHnkn  . 

 

(d) Prove that an Euler graph G  will be arbitrarily traceable from a vertex v  is G , if 
and only if every circuit in G  contains v . 

 

(e) Draw two graphs with degree sequence }4,3,3,3,3{ . Find their adjacency matrices.  

(f) Let G  be a Hamiltonian graph that is not a cycle. Prove that G  has atleast 2 
vertices of degree greater than or equal to 3. 

 

   

 GROUP-C  

 Answer any two questions 12×2 = 24 

3.  (a) Define isomorphism of two graphs. Examine whether the following graphs are 
isomorphic. 

 

 

 

 

 

4 

(b) Let ‘ G  be a simple graph of order n  if 1)deg()deg(  nvu ’ for every two non-
adjacent vertices u  and v  of G . Show that G  is connected. 

5 

(c) Find the smallest positive integer n  such that the complete graph nk  has atleast 

400 edges. 

3 

   
4.  (a) Let G  be a graph of order n  and size m . Let G  have k-components show that G  

will be a forest if and only if 0 knm . 
5 

(b) Prove that every simple graph with )2(n  vertices must have at least one pair of 
vertices whose degrees are same. 

4 

(c) Show that a k-regular graph of order 12 k  is Hamiltonian. 3 

   

u1 u2 

u3 u4 

v1 v2 

v3 v4 
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5. (a) Draw the graph whose incidence matrix is given by 

 























000110

101100

110000

010011

001001

 

6 

(b) Prove that if a graph is regular of odd degree then it has even order. 3 

(c) Show that the following graphs are Hamiltonian but not Eulerian. 

 

 

 

 

3 

   

6.  (a) A salesman has to visit four cities namely DCBA ,,,  starting from the home city 
A . He does not want to visit any city twice before completing his tour of all cities 
and would like to return to the home city A . Cost of going from one city two 
another are given below. 

 A B C D 

A – 5 2 3 

B 2 – 4 3 

C 2 4 – 7 

D 4 3 7 – 

Determine the optimal route and the minimum expenditure to be done by the 
salesman. 

6 

(b) Find n  for which the complete graph nk  is  (i) Semi-Eulerian (ii) Eulerian. 2 

(c) Find a matching of the bipartite graphs below or explain why no matching exists. 

 

 

 

 

 

 

4 

 
——×—— 

 

u1 

u2 u3 

u4 

u5 u6 

u7 u8 

v1 v2 

v3 v4 

v5 

v6 v7 

v8 
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UNIVERSITY OF NORTH BENGAL 
B.Sc. Honours 3rd Semester Examination, 2023 

SEC1-P1-MATHEMATICS 

(OLD SYLLABUS 2018) 

Time Allotted: 2 Hours Full Marks: 60 

The figures in the margin indicate full marks.

 The question paper contains SEC1A and SEC1B. Candidates are required to 
answer any one from the two SEC1 courses and they should mention it clearly 

on the Answer Book. 

 

 SEC1A 

LOGIC AND SETS 

 

 GROUP-A  

1. Answer any four questions: 3×4 = 12 

  (a) Determine all integer solutions of the congruence )4(mod73 x . 3 

(b) If BBA   holds for all subsets B , prove that A . 3 

(c) Prove the following logical equivalence: 

 )()()( rqrprqp   

3 

(d) If 32))))(((( APPPn , then find )(An . 3 

(e) If 10:{  xxA  or }32  x  and }20:{  xxB  then draw the figure of 
the set BA  in ℝ2. 

3 

(f) Prove or disprove: ‘Every transitive relation on ℝ is a reflexive relation’. 3 

   

 GROUP-B  

 Answer any four questions 6×4 = 24 

2.  (a) If  nnAn
12,11   and  nnBn

12,11   for all n ℕ, then find 




1

)\(
n

nn BA . 

3 

(b) Let   be a relation defined on ℤ by ‘ ba  iff 3||  ba  for all ba, ℤ’. Examine 
whether   is an equivalence relation. 

3 

   
3.  (a) If BA,  and C  are non-empty sets then prove that )()()( CABACBA  . 3 

(b) Show that BA \  and BA  are disjoint sets. 3 
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4.   Let   be a relation on a set A . Then prove that   is an equivalence relation on 

A  if and only if the following conditions hold: 
(i) A , where }:),{( AaaaA  , 

(ii) 1   and 

(iii)   . 

6 

   
5. Verify whether following statements are tautologies: 

(i) ))(( qpqp   

(ii) ))(()( qpqqp  . 

3+3 

   
6. If qp,  are primitive statements, prove that 

 )())(()(~ qpqppqp   
6 

   
7.  (a) Test the logical validity of the following argument: 

 All men are mortal. Sachin is a man. Therefore, Sachin is mortal. 

4 

(b) Prove that the set of all prime numbers is an infinite set. 2 

   

 GROUP-C  

 Answer any two questions 12×2 = 24 

8.  (a) Let BA,  and C  be three sets.  

 (i) If CABA   and CABA  , prove that CB  . 3 

 (ii) If CABA  , prove that CB  . 3 

(b) Let   be an equivalence relation on a set A . Prove that }:]{[ Aaa   is a 
partition of A . Here ][a  denotes the equivalence class of a w. r. t.  . 

6 

   

9.  (a) Let  nIn :{ ℕ}, where 














 






 

n
x

n
xIn

1111: . Prove that 





n

n xxI }22:{  and 



n

n xxI }11:{ . 

3+3 

(b) Among 60 students in a class, 36 got an A in the first examination and 31 got an A 
in the second examination. If 25 students did not get an A in either examination, 
how many students got A in both the examinations? 

3 

(c) Let CBA ,,  be three sets. Draw Venn-diagrams of )()( CABA   but CB  . 3 
   

10.(a) Suppose a set X  has 5 elements. Find ))(( XPn  and )))((( PPP . Here )(XP  
denotes the power set of X . 

4 

(b) Let CBA ,,  be three sets. Prove that 

  ))()\(())()\(( cBAABBABA  

4 

(c) Let nI  denote the first n  natural numbers. Describe the set mn II \  if (i) mn   and 

(ii) mn  . 

2+2 

   

ℝ 

ℝ 
ℕ ℕ 

ℝ 
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11.(a) Find the negation of the following statements: 

(i) )()( yqyxpx   

(ii) )()( yqyxpx   

(iii) ][)()( 2 yxyx   

2+2+2 

(b) Find the negation, converse and contrapositive of the following statements: 

(i) If x  is a real number then it is a rational number. 

(ii) Every equivalence relation on a set S  is a symmetric relation on S . 

3+3 

   

 SEC1B 

C++ 

 

 GROUP-A  

1. Answer any four questions: 3×4 = 12 

 (a) What is friend function? Describe its importance.  

(b) Write a short note on object oriented programming language.  

(c) Write a loop statement that will show the following output: 

6      
6 5     
6 5 4    
6 5 4 3   
6 5 4 3 2  
6 5 4 3 2 1 

 

 

(d) Write a C++ program that displays first 50 odd numbers.  

(e) What is copy constructor? Illustrate with a suitable C++ example.  

(f) Explain the use of inline function with the help of a suitable function.  

   

 GROUP-B  

 Answer any four questions 6×4 = 24 

2.  Write a C++ program to print all prime numbers between two positive numbers.  

   

3. Write a C++ program that counts the number of even and odd elements in an array.  

   

4.   Write a C++ program to exchange the biggest and smallest digits of an input 
number. 

 

   

5.   How does polymorphism promote extensibility? Explain various types of 
polymorphism with example. 

2+4 

   

6. Write a C++ program to generate Fibonacci sequence using overloading of 
increment operator. 

6 
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7.   What is inheritance? What are base and derived classes? Give a suitable example 
for inheritance. 

2+2+2 

   

 GROUP-C  

 Answer any two questions 12×2 = 24 

8.  (a) Differentiate between compiler time polymorphism and run time polymorphism. 6 

(b) Describe the importance of destructor. Explain its use with the help of an example. 3+3 

   

9.  (a) Explain class template. How many types of templates are there in C++? 3+3 

(b) What is the difference between error and exception? Explain what are the different 
types of exceptions. 

3+3 

   

10.(a) What is exception handling? Explain how to handle an exception with appropriate 
example. 

2+4 

(b) Write a C++ program to pick up the largest number from a 5 row by a 5 column 
matrix. 

6 

   

11.(a) Explain the difference between class and object in object oriented programming 
language. 

4 

(b) Explain enumeration data type with an example. 4 

(c) List out characteristics of constructors. 4 

 
——×—— 

 

 


