

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 3rd Semester Examination, 2023

CC5-PHYSICS

MATHEMATICAL PHYSICS-II

Time Allotted: 2 Hours

Full Marks: 40

 $1 \times 5 = 5$

The figures in the margin indicate full marks.

GROUP-A

- 1. Answer any *five* questions from the following:
 - (a) State Dirichlet's conditions.
 - (b) What is cyclic coordinate?
 - (c) What is regular singular point?
 - (d) Evaluate: $\beta(3, 5) \beta(5, 3)$
 - (e) What do you mean by normal modes?
 - (f) Solve: $\frac{\partial^2 \theta}{\partial x \, \partial t} = 0$
 - (g) Give two properties of spherical harmonics.
 - (h) Write down the Rodrigue's formula for Legendre's polynomial $P_n(x)$.

GROUP-B

Answer any *three* questions from the following $5 \times 3 = 15$

- 2. (a) Show that $\Gamma \frac{1}{2} = \sqrt{\pi}$. 2+(1+2)
 - (b) Write down the generating function for Legendre's polynomial $P_n(x)$. Hence, show that $(2n+1)xP_n(x) = (n+1)P_{n+1}(x) + nP_{n-1}(x)$.
- 3. (a) Express the Laplace's equation in spherical polar coordinates. 2+3
 - (b) Show that generalised momentum is conserved only when the corresponding generalised coordinate is cyclic.
- 4. Show that the shortest distance between two points in a flat space is a straight line 5 joining them.

5. Solve
$$\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$$
 using method of separation of variables. 5
Given: $u(0, t) = 2e^{-2t}$.

UG/CBCS/B.Sc./Hons./3rd Sem./Physics/PHYSCC5/2023

6. (a) Prove:
$$\frac{d}{dx}[x^{-n}J_n(x)] = -x^{-n}J_{n+1}(x)$$
 3+2

(b) Reduce the differential equation $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (m^2 x^2 - n^2)y = 0$ in Bessel's form using z = mx.

GROUP-C

Answer any *two* questions from the following $10 \times 2 = 20$

7. (a) If $x = r \cos \theta$, $y = r \sin \theta$ then prove (i) $\frac{\partial r}{\partial x} = \frac{\partial x}{\partial r}$, (ii) $\frac{\partial \theta}{\partial x} = \frac{1}{r^2} \frac{\partial x}{\partial \theta}$. 3+3+2+2

(b) Solve $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$ with $u(0, y) = 2e^{-3y}$ by method of separation of variables.

(c) Can you define Gamma function $\Gamma n = \int_{0}^{\infty} e^{-x} x^{n-1} dx$ for negative values of *n*, i.e.,

n < 0. Justify.

- (d) Express $x^3 x^2 + 1$ in terms of Legendre polynomial.
- 8. (a) State and prove Parseval's theorem. (b) If f(x) = -1 for $-\pi < x < 0$ = 1 for $0 \le x \le \pi$ then find the Fourier series for the function. 4+6
- 9. (a) Show that Bessel function $J_n(x)$ is an even function when *n* is even and is an 4+6 odd function when *n* is odd.

(b) Solve completely the equation $\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2}$ of a vibrating string of length *l*, fixed at both ends, given that y(0, t) = 0, y(l, t) = 0, y(x, 0) = f(x) and $\frac{\partial}{\partial t} \{y(x, 0)\} = 0$, 0 < x < l.

10.(a) Discuss the singularity of the following differential equation

$$\frac{d^2y}{dx^2} + \frac{y}{x^3} = 0$$
 +(4+1)

(2+3)

(b) Derive the relation between Beta and Gamma function

$$\beta(m, n) = \frac{\Gamma m \ \Gamma n}{\Gamma(m+n)}$$

(c) Find the Fourier series representation of the function f(x) in the interval $-\pi < x < \pi$ where,

$$f(x) = -k \quad \text{when} \quad -\pi < x < 0$$

= k when $0 < x < \pi$
Hence show that $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots$