
 'समानो मन्त्रः समितिः समानी'

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 3rd Semester Examination, 2023

CC5-Physics

Mathematical Physics-II

Full Marks: 40

The figures in the margin indicate full marks.

GROUP-A

1. Answer any five questions from the following: $1 \times 5=5$
(a) State Dirichlet's conditions.
(b) What is cyclic coordinate?
(c) What is regular singular point?
(d) Evaluate: $\beta(3,5)-\beta(5,3)$
(e) What do you mean by normal modes?
(f) Solve: $\frac{\partial^{2} \theta}{\partial x \partial t}=0$
(g) Give two properties of spherical harmonics.
(h) Write down the Rodrigue's formula for Legendre's polynomial $P_{n}(x)$.

GROUP-B

Answer any three questions from the following
2. (a) Show that $\Gamma \frac{1}{2}=\sqrt{\pi}$.
(b) Write down the generating function for Legendre's polynomial $P_{n}(x)$. Hence, show that $(2 n+1) x P_{n}(x)=(n+1) P_{n+1}(x)+n P_{n-1}(x)$.
3. (a) Express the Laplace's equation in spherical polar coordinates.
(b) Show that generalised momentum is conserved only when the corresponding generalised coordinate is cyclic.
4. Show that the shortest distance between two points in a flat space is a straight line joining them.
5. Solve $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$ using method of separation of variables.

Given: $u(0, t)=2 e^{-2 t}$.
6. (a) Prove: $\frac{d}{d x}\left[x^{-n} J_{n}(x)\right]=-x^{-n} J_{n+1}(x)$
(b) Reduce the differential equation $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(m^{2} x^{2}-n^{2}\right) y=0$ in Bessel's form using $z=m x$.

GROUP-C

Answer any two questions from the following

7. (a) If $x=r \cos \theta, y=r \sin \theta$ then prove (i) $\frac{\partial r}{\partial x}=\frac{\partial x}{\partial r}$, (ii) $\frac{\partial \theta}{\partial x}=\frac{1}{r^{2}} \frac{\partial x}{\partial \theta}$.
(b) Solve $\frac{\partial u}{\partial x}=4 \frac{\partial u}{\partial y}$ with $u(0, y)=2 e^{-3 y}$ by method of separation of variables.
(c) Can you define Gamma function $\Gamma n=\int_{0}^{\infty} e^{-x} x^{n-1} d x$ for negative values of n, i.e., $n<0$. Justify.
(d) Express $x^{3}-x^{2}+1$ in terms of Legendre polynomial.
8. (a) State and prove Parseval's theorem.
(b) If $f(x)=-1$ for $-\pi<x<0$

$$
=1 \quad \text { for } \quad 0 \leq x \leq \pi
$$

then find the Fourier series for the function.
9. (a) Show that Bessel function $J_{n}(x)$ is an even function when n is even and is an odd function when n is odd.
(b) Solve completely the equation $\frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} y}{\partial t^{2}}$ of a vibrating string of length l, fixed at both ends, given that $y(0, t)=0, y(l, t)=0, y(x, 0)=f(x)$ and $\frac{\partial}{\partial t}\{y(x, 0)\}=0,0<x<l$.
10.(a) Discuss the singularity of the following differential equation

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+\frac{y}{x^{3}}=0 \tag{2+3}
\end{equation*}
$$

(b) Derive the relation between Beta and Gamma function

$$
\beta(m, n)=\frac{\Gamma m \Gamma n}{\Gamma(m+n)}
$$

(c) Find the Fourier series representation of the function $f(x)$ in the interval $-\pi<x<\pi$ where,

$$
\begin{aligned}
f(x) & =-k & & \text { when } & -\pi<x<0 \\
& =k & & \text { when } & 0<x<\pi
\end{aligned}
$$

$\left.\begin{array}{rl}f(x) & =-k \quad \text { when }-\pi<x<0 \\ & =k \quad \text { when } 0<x<\pi\end{array}\right]$ Hence show that $\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\cdots \cdots . ~ \$$
\qquad

