UNIVERSITY OF NORTH BENGAL
B.Sc. Honours 3rd Semester Examination, 2023

CC7-Physics

Digital Systems and Applications
Time Allotted: 2 Hours
Full Marks: 40
The figures in the margin indicate full marks.

GROUP-A

1. Answer any five questions from following:
(a) Choose the correct answer:

For a logical circuit there are n binary inputs. Then the number of different input combinations in the truth table is
(i) $2 n$
(ii) $2 / n$
(iii) 2^{n}
(iv) $2(n+1)$
(b) In an Even parity scheme, which of the following words contain an error? Explain.
(i) 10110111
(ii) 11101010
(c) Convert $(10011010101)_{2}$ to Octal.
(d) Subtract $(1010)_{2}$ from $(1111)_{2}$ using 2 's complement scheme.
(e) Using Boolean algebra, verify $\bar{A} B(\bar{D}+\bar{C} D)+B(A+\bar{A} C D)=B$.
(f) Write down full form of ASCII.
(g) What is the decimal number represented by the BCD code 101000111 ?
(h) What is the minimum number of flip-flops required for a synchronous decade counter?

GROUP-B

Answer any three questions from the following
2. Draw the logic symbol of 4:1 DEMUX using basic gates. Write one application of multiplexer.
3. (a) Determine the output waveform x for the input waveforms A and B given below for a XOR gate.

(b) Construct a Full Adder circuit using two Half adders and an OR gate and describe the operation.
4. (a) Derive the Boolean expression for a two input XOR gate to realize with two input NAND gates without using complemented variables and draw the circuit.
(b) Simplify the Boolean expression $(A+B)(\bar{A}+C)(\bar{B}+D)(C \bar{D})$.

UG/CBCS/B.Sc./Hons./3rd Sem./Physics/PHYSCC7/2023

5. (a) Simplify the following expression using K map

$$
f(A, B, C)=\sum m(2,3,4,5)+\sum d(6,7)
$$

(b) What do you mean by Minterm and Maxterm?
6. What is a parity checker? Discuss how XOR gate can be employed as parity checker.

GROUP-C

Answer any two questions from the following
7. (a) Simplify the logic circuit given below and then implement the simplified circuit with logic gates.

(b) With the help of logic diagram and truth table, explain a 3-line to 8 -line decoder.
(c) Distinguish between an encoder and a decoder.
8. (a) What advantage does a J-K flip-flop have over S-R flip-flop?
(b) Construct the logic diagram of a master-slave JK flip-flop and explain the working principle.
(c) What is D flip-flop? Show how an S-R flip-flop can be converted into a D flip-flop.
9. (a) Explain the operation of 4-bit serial in parallel out shift register. Give some $(4+2)+4$ applications of shift register.
(b) Construct Karnaugh map to design a logic circuit with minimum number of logic gates and implement the following truth table with logic circuit:

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

10.(a) Write short notes on any two of the following:
(i) DRAM
(ii) ALU
(iii) CPU
(iv) Mapping techniques.
(b) Distinguish between synchronous and asynchronous counters. Describe with necessary diagrams the working of asynchronous counter.
(c) What is multivibrator? Draw the circuit diagram of an astable multivibrator and explain its principle of operation.
\qquad

