उत्तर बड विश्वविद्यालय मन्त्र: समितिः समानीं
 UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 3rd Semester Examination, 2023

GE2-P1-Physics

Time Allotted: 2 Hours
Full Marks: 40
The figures in the margin indicate full marks.

The question paper contains GE-3A and GE-3B. The candidates are required to answer any one from two courses. Candidates should mention it clearly on the Answer Book.

GE-3A

Mechanics

GROUP-A

1. Answer any five questions from the following:
(a) 'Electric current is not a vector quantity' - Why?
(b) Write down the order and degree of the differential equation:

$$
\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3}=\left(\frac{d^{2} y}{d x^{2}}\right)^{2}
$$

(c) What do you mean by the inertial frame of reference?
(d) Two artificial satellites of different masses are revolving round the earth at the same altitude. Which one will be moving faster?
(e) Define radius of gyration.
(f) State the condition under which a motion can be called simple harmonic.
(g) Following Stirling's formula calculate the value of 10!.
(h) What is the value of Poisson's ratio for a perfectly elastic body?

GROUP-B

Answer any three questions from the following

$$
5 \times 3=15
$$

2. (a) For what value of ' λ ', the set of vectors $3 \hat{i}-2 \hat{j}+\hat{k}, \hat{i}+\hat{j}-2 \hat{k}$ and $3 \hat{i}-4 \hat{j}+\lambda \hat{k}$ are coplanar?
(b) If $\vec{A}=\vec{A}(t)$ is a time (t)-dependent vector having constant magnitude, show that \vec{A} and $d \vec{A} / d t$ are perpendicular to each other.
3. (a) What do you mean by central force? Prove that, the angular momentum of a particle under a central force is conserved.
(b) Under what condition a force is termed as 'conservative'? Give an example of a conservative force.
4. (a) Define centre of mass of a body. Can the geometrical centre and the centre of mass of a body coincide? If yes, give an example.
(b) What is a centrifugal force? Why it is called a fictitious force?
5. Define the modulus of rigidity of an elastic material. Show that the torsional rigidity of a cylindrical wire of length l and radius R is $\pi \eta R^{4} / 2 l, \eta$ being the modulus of rigidity of the material of the wire.
6. (a) Write down the postulates of Einstein's special theory of relativity.
(b) Two space-ships A and B are moving opposite to each other. An observer, at rest on the earth measures the speed of A to be $0.75 c$ away from the earth and that of B to be $0.85 c$ towards the earth where c is the speed of light in vacuum. Find out the velocity of B with respect to A.

GROUP-C

Answer any two questions from the following
(b) Calculate the minimum velocity and the period of revolution of an artificial satellite at a certain height from the surface of the earth.
(c) What do you mean by the term 'escape velocity'? Explain the absence of any atmosphere on the moon.
8. (a) Establish the differential equation of a simple harmonic motion and hence find out its solution.
(b) Prove that $x(t)=3 \sin t+4 \cos t$ represents a solution of the equation of simple harmonic motion. What is the amplitude of this motion?
9. (a) Draw and explain the stress-strain diagram in connection with the elastic behaviour of a wire.
(b) Define Young's modulus, Bulk modulus and Shear modulus of a homogeneous elastic body and hence establish the interrelation among them.
10.(a) Define an axial vector and a polar-vector. Give an example of each.
(b) If the distance between the sun and the earth is reduced to half of their present distance, how many days will be there in one year?
(c) Explain the phenomenon of time-dilation in STR. What do you mean by 'proper time interval'?

GE-3B

Thermal Physics and Statistical Mechanics

GROUP-A

1. Answer any five questions from the following:
(a) What is extensive variable? Give an example.
(b) What is a perfect blackbody?
(c) State the third law of thermodynamics.
(d) What do you mean by 'mean free path' of a gas particle?
(e) Define the Fermi energy of a system of spin- $\frac{1}{2}$ particles.
(f) Write a short note on a closed system.
(g) Write down the statement of the Stefan-Boltzmann law.
(h) State the equipartition law of gas.

GROUP-B

Answer any three questions from the following $5 \times 3=15$
2. (a) A system of ideal gas undergoes an adiabatic process. Obtain the expression of work done during the process.
(b) Show that, for an ideal gas $C_{P}-C_{V}=R$.
3. (a) Define the root mean square (rms) velocity of the molecules of a gas.
(b) Using the Kinetic theory of gases, show that the pressure of a gas $P=\rho c^{2} / 3$, where ρ is the density of the gas, and c is the r.m.s. velocity of the gas particles.
4. Derive the Maxwell law of velocity distribution for the molecules of a gas at temperature T, and pressure P.
5. What is Gibb's paradox? How can it be resolved?
6. (a) Show that for an ideal gas thermal conductivity $K=\eta C_{v}$, where the symbols carry their usual meanings.
(b) C_{P} for O_{2} gas is $7.05 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{k}^{-1}$. If the temperature of 64 gm of O_{2} gas is increased from 300 K to 350 K , find out the increase in its enthalpy.

GROUP-C

Answer any two questions from the following

(b) From Kirchhoff's law show that a good radiator is also a good absorber.
8. (a) What do you mean by thermodynamic potential? 3
(b) Prove the thermodynamic relations: $4+3$
(i) $\left(\frac{\partial T}{\partial V}\right)_{S}=-\left(\frac{\partial P}{\partial S}\right)_{V}$ and
(ii) $\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V}$
Where the symbols carry their usual meanings.
9. (a) What is heat engine? Briefly describe the working principle of a heat engine. 5
(b) Show that the thermal efficiency of a Carnot engine operating between a source at temperature T_{1} and a sink at temperature T_{2}, is $\eta=1-\frac{T_{2}}{T_{1}}$.
10.(a) Using the Fermi-Dirac statistics derive the F-D distribution function. 5
(b) State and derive Liouville's theorem in thermodynamics.
(c) Obtain the relation between entropy and thermodynamic probability for an 2 ensemble of your choices.

