

'समानों मन्त्रः समितिः समानी' UNIVERSITY OF NORTH BENGAL B.Sc. Honours 3rd Semester Examination, 2023

GE2-P1-PHYSICS

Time Allotted: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks.

The question paper contains GE-3A and GE-3B. The candidates are required to answer any *one* from *two* courses. Candidates should mention it clearly on the Answer Book.

GE-3A

MECHANICS

GROUP-A

1.		Answer any <i>five</i> questions from the following:	$1 \times 5 = 5$
	(a)	'Electric current is not a vector quantity' — Why?	1
	(b)	Write down the order and degree of the differential equation:	1
		$\left[1 + \left(\frac{dy}{dx}\right)^2\right]^3 = \left(\frac{d^2y}{dx^2}\right)^2$	
	(c)	What do you mean by the inertial frame of reference?	1
	(d)	Two artificial satellites of different masses are revolving round the earth at the same altitude. Which one will be moving faster?	1
	(e)	Define radius of gyration.	1
	(f)	State the condition under which a motion can be called simple harmonic.	1
	(g)	Following Stirling's formula calculate the value of 10!.	1
	(h)	What is the value of Poisson's ratio for a perfectly elastic body?	1

GROUP-B

Answer any <i>three</i> questions from the fe	ollowing	$5 \times 3 = 15$
•		

- 2. (a) For what value of ' λ ', the set of vectors $3\hat{i} 2\hat{j} + \hat{k}$, $\hat{i} + \hat{j} 2\hat{k}$ and $3\hat{i} 4\hat{j} + \lambda\hat{k}$ 3+2 are coplanar?
 - (b) If $\vec{A} = \vec{A}(t)$ is a time(t)-dependent vector having constant magnitude, show that \vec{A} and $d\vec{A}/dt$ are perpendicular to each other.

UG/CBCS/B.Sc./Hons./3rd Sem./Physics/PHYSGE3/2023

3.	(a)	What do you mean by central force? Prove that, the angular momentum of a particle under a central force is conserved.	(1+2)+ (1+1)
	(b)	Under what condition a force is termed as 'conservative'? Give an example of a conservative force.	
4.	(a)	Define centre of mass of a body. Can the geometrical centre and the centre of mass of a body coincide? If yes, give an example.	(1+1+1) +(1+1)
	(b)	What is a centrifugal force? Why it is called a fictitious force?	
5.		Define the modulus of rigidity of an elastic material. Show that the torsional rigidity of a cylindrical wire of length l and radius R is $\pi \eta R^4/2l$, η being the modulus of rigidity of the material of the wire.	1+4
6.	(a)	Write down the postulates of Einstein's special theory of relativity.	2+3
	(b)	Two space-ships A and B are moving opposite to each other. An observer, at rest on the earth measures the speed of A to be $0.75c$ away from the earth and that of B to be $0.85c$ towards the earth where c is the speed of light in vacuum. Find out the velocity of B with respect to A .	
GROUP-C			
		Answer any two questions from the following	$10 \times 2 = 20$

7.	(a)	What is a geo-stationary satellite? Write down few applications of GPS system.	1+2
	(b)	Calculate the minimum velocity and the period of revolution of an artificial satellite at a certain height from the surface of the earth.	2+2
	(c)	What do you mean by the term 'escape velocity'? Explain the absence of any atmosphere on the moon.	1+2
8.	(a)	Establish the differential equation of a simple harmonic motion and hence find out its solution.	3+3
	(b)	Prove that $x(t) = 3\sin t + 4\cos t$ represents a solution of the equation of simple harmonic motion. What is the amplitude of this motion?	3+1
9.	(a)	Draw and explain the stress-strain diagram in connection with the elastic behaviour of a wire.	3
	(b)	Define Young's modulus, Bulk modulus and Shear modulus of a homogeneous elastic body and hence establish the interrelation among them.	3+4
10	.(a)	Define an axial vector and a polar-vector. Give an example of each.	2+2
	(b)	If the distance between the sun and the earth is reduced to half of their present distance, how many days will be there in one year?	3
	(c)	Explain the phenomenon of time-dilation in STR. What do you mean by 'proper time interval'?	2+1

GE-3B

THERMAL PHYSICS AND STATISTICAL MECHANICS

GROUP-A

1.	Answer any <i>five</i> questions from the following:	$1 \times 5 = 5$
----	--	------------------

- (a) What is extensive variable? Give an example.
- (b) What is a perfect blackbody?
- (c) State the third law of thermodynamics.
- (d) What do you mean by 'mean free path' of a gas particle?
- (e) Define the Fermi energy of a system of spin- $\frac{1}{2}$ particles.
- (f) Write a short note on a closed system.
- (g) Write down the statement of the Stefan-Boltzmann law.
- (h) State the equipartition law of gas.

CDAUD D

	GROUP-B			
		Answer any three questions from the following	$5 \times 3 = 15$	
2.	(a)	A system of ideal gas undergoes an adiabatic process. Obtain the expression of work done during the process.	2+3	
	(b)	Show that, for an ideal gas $C_P - C_V = R$.		
3.	(a)	Define the root mean square (rms) velocity of the molecules of a gas.	1+4	
	(b)	Using the Kinetic theory of gases, show that the pressure of a gas $P = \rho c^2/3$, where ρ is the density of the gas, and <i>c</i> is the r.m.s. velocity of the gas particles.		
4.		Derive the Maxwell law of velocity distribution for the molecules of a gas at temperature T , and pressure P .	5	
5.		What is Gibb's paradox? How can it be resolved?	3+2	
6.	(a)	Show that for an ideal gas thermal conductivity $K = \eta C_v$, where the symbols carry their usual meanings.	3+2	
	(b)	C_P for O ₂ gas is 7.05 cal mol ⁻¹ k ⁻¹ . If the temperature of 64 gm of O ₂ gas is increased from 300 K to 350 K, find out the increase in its enthalpy.		
		GROUP-C		
		Answer any two questions from the following	$10 \times 2 = 20$	

7. (a) Give the derivation of Planck's law of blackbody radiation. How can we arrive a	at 5+2
the Rayleigh-Jeans distribution law from Planck's law?	

3 (b) From Kirchhoff's law show that a good radiator is also a good absorber.

UG/CBCS/B.Sc./Hons./3rd Sem./Physics/PHYSGE3/2023

- 8. (a) What do you mean by thermodynamic potential?
 - (b) Prove the thermodynamic relations:

(i)
$$\left(\frac{\partial T}{\partial V}\right)_{S} = -\left(\frac{\partial P}{\partial S}\right)_{V}$$
 and
(ii) $\left(\frac{\partial S}{\partial V}\right)_{T} = \left(\frac{\partial P}{\partial T}\right)_{V}$

Where the symbols carry their usual meanings.

9. (a) What is heat engine? Briefly describe the working principle of a heat engine. (b) Show that the thermal efficiency of a Carnot engine operating between a source at temperature T_1 and a sink at temperature T_2 , is $\eta = 1 - \frac{T_2}{T_1}$.

3

4+3

10.(a)	Using the Fermi-Dirac statistics derive the F-D distribution function.	5
(b)	State and derive Liouville's theorem in thermodynamics.	1+2
(c)	Obtain the relation between entropy and thermodynamic probability for an ensemble of your choices.	2

____×____