
 'समानो मन्त्रः समितिः समानी'

UNIVERSITY OF NORTH BENGAL
B.Sc. Honours 5th Semester Examination, 2023

CC12-ChEMISTRY

Physical Chemistry
Time Allotted: 2 Hours
Full Marks: 40
The figures in the margin indicate full marks.

1. Answer any five questions from the following: $1 \times 5=5$
(a) Why $\psi^{*} \psi$ is used in place of ψ^{2} ?
(b) What is a photosensitizer?
(c) What are selection rules for anharmonic vibrator?
(d) N_{2} does not show microwave spectra - Explain why.
(e) Write down the significance of molar absorption co-efficient.
(f) Define gold number.
(g) What is a rigid rotator?
2. Answer any three questions from the following:

$$
5 \times 3=15
$$

(a) (i) Show that $A e^{-a x}$ is an eigen function of the operator. What is the eigen value?
(ii) What do you mean by degenerate and non-degenerate eigen functions?
(b) (i) With the help of Jablonski diagram briefly explain the phenomenon of fluorescence and phosphorescence.
(ii) What is meant by Quenching of Fluorescence? 1
(c) (i) Derive the relation between thermodynamic probability and entropy. 2
(ii) Using partition function show that for a monoatomic gas, 3

$$
U=\frac{3}{2} N R T \quad \text { and } \quad p=\frac{N R T}{V}
$$

(d) (i) What do you mean by polarizibility of a molecule? Explain Raman effect in terms of polarizibility.
(ii) Explain the mechanism of Micelle formation.
(e) (i) Define Lambert-Beer's Law. If absorbance (A) of a solution is 1 (one) at $\lambda_{\text {max }}$ then find out the percentage of absorbed photons with wavelength $\lambda_{\text {max }}$.
(ii) How can Einstein's Photoelectric equation be verified?
3. Answer any two questions from the following:
(a) (i) What is Quantum Efficiency?
(ii) Explain why the Quantum Efficiency for the reaction between H_{2} and Cl_{2} is high but for H_{2} and Br_{2} is low although both are chain reactions?
(iii) Monochromatic light is passed through a 1 mm path length cell containing $0.005 \mathrm{~mole} / \mathrm{dm}^{3}$ solution. The light intensity is reduced to 16% of its value. Calculate the Molar extinction coefficient of the sample.
(b) (i) Explain with diagram the $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ branches of Vibrational-Rotational spectrum for a diatomic molecule.
(ii) What are Hot Bands?
(iii) The equilibrium intermolecular distance of CO is 113.53 pm . Calculate the energy of the molecule for $J=1$. [Given $\mathrm{C}=12, \mathrm{O}=16$]
(c) (i) What is Compton Effect?
(ii) Although CO_{2} has no permanent dipole moment, yet it shows both Infrared and Raman spectra. - Comment.
(iii) Give three differences between Harmonic and Anharmonic oscillators. 2
(iv) Write a short note on Franck-Condon principle.
(d) (i) Find the frequency of absorption for the first electronic transition of 1,3 butadiene treating its π electrons on the basis of particle in a box model. The bond length is 154 pm for $\mathrm{C}-\mathrm{C}$ and 135 pm for $\mathrm{C}=\mathrm{C}$.
(ii) Find the degeneracy of the first four energy levels of a particle in a 3D box of dimensions $a=b=2 c$.
(iii) Derive the quantum mechanical operators for the three components of angular momentum.

