UG/CBCS/B.Sc./Hons./5th Sem./Mathematics/MATHCC11/Revised & Old/2023

'समानो मन्त्रः समितिः समानी' UNIVERSITY OF NORTH BENGAL B.Sc. Honours 5th Semester Examination, 2023

CC11-MATHEMATICS

GROUP THEORY-II

(REVISED SYLLABUS 2023 / OLD SYLLABUS 2018)

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks.

GROUP-A

1.	Answer any <i>four</i> questions from the following:	$3 \times 4 = 12$
	(a) Show that the characteristic subgroup of a group is normal.	3
	(b) Find the number of inner automorphisms of the group S_3 .	3
	(c) Find the number of Sylow 2-subgroups of S_4 and A_4 .	3
	(d) Find the number of non-isomorphic abelian groups of order $(2017)^3$.	3
	(e) Find the conjugacy classes of the group D_3 .	3
	(f) Prove that the additive group $\mathbb{Z} \times \mathbb{Z}$ is not cyclic.	3

GROUP-B

		Answer any <i>four</i> questions from the following	$6 \times 4 = 24$
2.	(a)	Prove that a commutative group G is simple if and only if $G \cong \mathbb{Z}_p$, for some prime number p.	3
	(b)	Let G be an infinite cyclic group. Prove that $Aut(G) \cong \mathbb{Z}_2$.	3
3.		Let <i>H</i> be a subgroup of a group <i>G</i> . Consider a mapping $\sigma: H \times G \to G$, defined by $\sigma(h, g) = gh^{-1}$ for all $(h, g) \in H \times G$.	
	(a)	Prove that this mapping defines an action of H on G .	4
	(b)	Find $Orb(g)$ and $Stab(g)$, where $g \in G$. Here $Orb(g)$ denotes the orbit of 'g' and $Stab(g)$ denotes the stabilizer of 'g' under this action.	2

UG/CBCS/B.Sc./Hons./5th Sem./Mathematics/MATHCC11/Revised & Old/2023						
4.	State and prove Sylow's second theorem.	6				
	Prove that there is no simple group of order 300.	4				
(b)	State the fundamental theorem of finite abelian group.	2				
6. (a)	Find the number of elements of order 5 in $\mathbb{Z}_{15} \times \mathbb{Z}_5$.	4				
(b)	Write the class equation of S_4 .	2				
7.	Prove that direct product of two finite cyclic groups is cyclic if and only if orders of the cyclic groups are relatively prime.	6				
GROUP-C						
	Answer any <i>two</i> questions from the following	$12 \times 2 = 24$				

Answer any <i>two</i> questions from the following	$12 \times 2 = 24$
8. (a) Let N be a normal subgroup of a group G. Prove that G/N is abelian if and online if $[G, G]$ is a subgroup of N. Here $[G, G]$ denotes the commutator subgroup of G	-
(b) Find $[A_4, A_4]$ and $[S_3, S_3]$.	4+4
9. (a) Show that the converse of Lagrange's theorem for finite abelian group is not tru in general.	e, 4
(b) Prove that the center of a <i>p</i> -group is nontrivial.	4
(c) Show that every non-cyclic group of order 21 contains only 14 elements of order 3.	4
10.(a) Define automorphism of a group G. Prove that set of all automorphisms of group G forms a group under function composition. If C_n be a cyclic group G order n prove that $\operatorname{Aut}(C_n) \cong \mathbb{Z}_n^X$, an abelian group of order $\phi(n)$.	
 (b) Let G be a finite group and p be a prime integer. If p divides G then prove the G has an element of order p. 	at 4
11.(a) Prove that every group is isomorphic to some subgroup of the group S_A of a permutations of some set A . Using this result, prove that if G be a group and H is a subgroup of G of index n , then there exists a homomorphism ϕ from G into S such that ker $\phi \subseteq H$.	be
(b) Prove that if a group G acts on itself by conjugation, then for each $a \in G$ Stab $(a) = Z_a$. Here Z_a denotes the centralizer of 'a'.	F, 4

____×____