'समानो मन्त्रः समितिः समानी'
UNIVERSITY OF NORTH BENGAL
B.Sc. Honours 5th Semester Examination, 2023

CC11-MATHEMATICS

Group Theory-II

(Revised Syllabus 2023 / Old Syllabus 2018)

The figures in the margin indicate full marks.

GROUP-A

1. Answer any four questions from the following: $3 \times 4=12$
(a) Show that the characteristic subgroup of a group is normal. 3
(b) Find the number of inner automorphisms of the group S_{3}. 3
(c) Find the number of Sylow 2-subgroups of S_{4} and A_{4}. 3
(d) Find the number of non-isomorphic abelian groups of order (2017) ${ }^{3}$. 3
(e) Find the conjugacy classes of the group D_{3}. 3
(f) Prove that the additive group $\mathbb{Z} \times \mathbb{Z}$ is not cyclic. 3

GROUP-B

Answer any four questions from the following $\quad 6 \times 4=24$

2. (a) Prove that a commutative group G is simple if and only if $G \cong \mathbb{Z}_{p}$, for some prime number p.
(b) Let G be an infinite cyclic group. Prove that $\operatorname{Aut}(G) \cong \mathbb{Z}_{2}$.
3. Let H be a subgroup of a group G. Consider a mapping $\sigma: H \times G \rightarrow G$, defined by $\sigma(h, g)=g h^{-1}$ for all $(h, g) \in H \times G$.
(a) Prove that this mapping defines an action of H on G.
(b) Find $\operatorname{Orb}(g)$ and $\operatorname{Stab}(g)$, where $g \in G$. Here $\operatorname{Orb}(g)$ denotes the orbit of ' g ' 2 and $\operatorname{Stab}(g)$ denotes the stabilizer of ' g ' under this action.

UG/CBCS/B.Sc./Hons./5th Sem./Mathematics/MATHCC11/Revised \& Old/2023

4. State and prove Sylow's second theorem.
5. (a) Prove that there is no simple group of order 300 .
(b) State the fundamental theorem of finite abelian group.
6. (a) Find the number of elements of order 5 in $\mathbb{Z}_{15} \times \mathbb{Z}_{5}$.
(b) Write the class equation of S_{4}.
7. Prove that direct product of two finite cyclic groups is cyclic if and only if orders of the cyclic groups are relatively prime.

GROUP-C

Answer any two questions from the following
8. (a) Let N be a normal subgroup of a group G. Prove that G / N is abelian if and only if $[G, G]$ is a subgroup of N. Here $[G, G]$ denotes the commutator subgroup of G.
(b) Find $\left[A_{4}, A_{4}\right]$ and $\left[S_{3}, S_{3}\right]$.
9. (a) Show that the converse of Lagrange's theorem for finite abelian group is not true, in general.
(b) Prove that the center of a p-group is nontrivial.
(c) Show that every non-cyclic group of order 21 contains only 14 elements of order 3 .
10.(a) Define automorphism of a group G. Prove that set of all automorphisms of a group G forms a group under function composition. If C_{n} be a cyclic group of order n prove that $\operatorname{Aut}\left(C_{n}\right) \cong \mathbb{Z}_{n}^{X}$, an abelian group of order $\phi(n)$.
(b) Let G be a finite group and p be a prime integer. If p divides $|G|$ then prove that G has an element of order p.
11.(a) Prove that every group is isomorphic to some subgroup of the group S_{A} of all permutations of some set A. Using this result, prove that if G be a group and H be a subgroup of G of index n, then there exists a homomorphism ϕ from G into S_{n} such that $\operatorname{ker} \phi \subseteq H$.
(b) Prove that if a group G acts on itself by conjugation, then for each $a \in G$, $\operatorname{Stab}(a)=Z_{a}$. Here Z_{a} denotes the centralizer of ' a '.

