
 'समानो मन्त्रः समितिः समानी'
 UNIVERSITY OF NORTH BENGAL
 B.Sc. Honours 5th Semester Examination, 2023

 CC12-MATHEMATICS

 CC12-MATHEMATICS

 Numerical Methods

 Numerical Methods

 (ReVised Syllabus 2023 / Old Syllabus 2018)

 (ReVised Syllabus 2023 / Old Syllabus 2018)}

The figures in the margin indicate full marks.

GROUP-A

1. Answer any five questions:
(a) Prove that $\nabla^{k} y_{n}=\Delta^{k} y_{n-k}$.
(b) Find the number of significant figures in V_{A} w.r.t V_{T}, where $V_{A}=0.05411$, $V_{T}=0.05418$.
(c) Why Newton-Raphson is called the method of tangent?
(d) State the condition of convergence of Gauss-Seidel iteration method for solving numerically system of linear equations.
(e) When a quadrature formula is called open type or closed type?
(f) Let h be the length of spacing and $\left(\Delta_{h}-\nabla_{h}\right) x^{2}=8$. Find h.
(g) Find the value of k for which the Trapezoidal rule with single interval [0,1] will be exact for approximating the integral

$$
\int_{0}^{1}\left(x^{4}-k x^{3}\right) d x
$$

(h) Write down the iterative formula of Runge-Kutta method of order 4 stating clearly the terms involved.

GROUP-B

2. Answer any three questions:
(a) Find the inverse of the matrix

$$
A=\left(\begin{array}{lll}
3 & 2 & 1 \\
2 & 3 & 2 \\
1 & 2 & 2
\end{array}\right)
$$

Using LU decomposition method taking $u_{11}=u_{22}=u_{33}=1$, where $U=\left(u_{i j}\right)_{3 \times 3}$.
(b) Show that $f(E) a^{x}=a^{x} f(a)$ where $f(E)$ is a polynomial in E taking unity as the interval of differencing.

UG/CBCS/B.Sc./Hons./5th Sem./Mathematics/MATHCC12/Revised \& Old/2023

(c) (i) Find the missing term in the following table:

x	0	1	2	3	4	5
$f(x)$	0	-	8	15	-	35

(ii) What is interpolation?
(d) Use Runge-Kutta method of order 4 to approximate y when $x=0.1$ and $x=0.2$ given that

$$
\frac{d y}{d x}=\frac{y-x}{1+y+x}, \quad y(0)=2
$$

(e) Describe Regula-Falsi method to find a simple root of an equation $f(x)=0$. Why this method is called an inverse linear interpolation method?

GROUP-C

3. Answer any two questions:
(a) (i) Find an approximate real root of the equation $2 x+3 \sin x-5=0$ correct upto 3 decimal places using secant method.
(ii) Show that Gauss-Seidel iteration is convergent if the system of equation is strictly diagonally dominant.
(b) (i) Evaluate $\int_{0}^{\pi / 2} \sqrt{1-0.162 \sin ^{2} x} d x$ by Simpson's $1 / 3^{\text {rd }}$ rule, correct upto four decimal places taking six subintervals.
(ii) Define degree of precision of a quadrature formula. Prove that the degree of precision of a quadrature formula of the form

$$
\int_{a}^{b} f(x) d x=\sum_{k=0}^{n} w_{k} f\left(x_{k}\right)
$$

cannot exceed $2 n+1$ where x_{k} 's are the $(n+1)$ nodes in $[a, b]$ and w_{i} 's are $n+1$ weights given to the $(n+1)$ function values $f\left(x_{k}\right)$.
(c) (i) State the assumption for the applicability of Power method to determine a dominant eigen pair of a square matrix. How this method is applicable to compute the least eigen value and corresponding eigen vector of a square matrix.
(ii) Show that

$$
\Delta \log f(x)=\log \left\{1+\frac{\Delta f(x)}{f(x)}\right\} \quad \text { and } \quad \nabla \Delta f(x)=(\Delta-\nabla) f(x)
$$

where the symbols have their usual meaning.
(d) (i) Solve the following system of linear equations:

$$
\begin{aligned}
& 10 x+y+z=12 \\
& 2 x+10 y+z=13 \\
& x+y+3 z=5
\end{aligned}
$$

using Gauss-Jordan method, correct upto 3D.
(ii) Deduce numerical differentiation formula from Newton's backward interpolation formula without error term keeping at least three terms.

