

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 5th Semester Examination, 2023

DSE-P2-MATHEMATICS

(REVISED SYLLABUS 2023 / OLD SYLLABUS 2018)

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks.

The question paper contains DSE2A and DSE2B. Candidates are required to answer any *one* from the *two* DSE2 courses and they should mention it clearly on the Answer Book.

DSE2A

NUMBER THEORY

GROUP-A

1.		Answer any <i>four</i> questions:	$3 \times 4 = 12$	
	(a)	If a has order a mod p, where p is an odd prime, show that $a^k \equiv -1 \pmod{p}$.	3	
	(b)	Which of the following Diophantine equations cannot be solved:	1+1+1	
		(1) $6x + 4y = 91$		
		(ii) $621x + 736y = 46$		
		(iii) $158x - 57y = 7$		
	(c)	If p be any prime and a be a integer such that $gcd(a, p) = 1$, prove that following	3	
		relation of Legendre symbols:		
		$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$		
	(d)	Verify: (i) 3 is a primitive root of 7	2+1	
		(ii) 3 is a primitive root of 6		
	(e)	Solve: $3x \equiv 7 \pmod{4}$	3	
	(f)	Find $gcd(567, -315)$.	3	
	GROUP-B			
2.		Answer any <i>four</i> questions:	6×4 = 24	
	(a)	If p and q are two distinct odd primes, show that	6	
		$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = \left(-1\right)^{\frac{p-1}{2}} \left(-1\right)^{\frac{q-1}{2}}$		

(b) If p be a prime, show that $(p-1)! \equiv p-1 \pmod{(1+2+\dots+(p-1))}$.

Turn Over

6

UG/CBCS/B.Sc./Hons./5th Sem./Mathematics/MATHDSE2/Revised & Old/2023

- (c) If a, b, c are integers and a, b are not both zero, then show that the equation ax + by = c has an integral solution iff d is a divisor of c, where $d = \gcd(a, b)$. Also if (x_0, y_0) be any particular solution, then show that all integral solutions are given by $\left(x_0 + \frac{b}{d}t, y_0 - \frac{a}{d}t\right)$, where $t \in \mathbb{Z}$.
- (d) Show that $(1^3 + 2^3 + 3^3 + \dots + 99^3) \times (1^5 + 2^5 + \dots + 100^5)$ is divisible by 15.
- (e) Consider the polynomial

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

with integral coefficients and $a_n \neq 0 \pmod{p}$, where p is a prime. Prove that the congruence $f(x) \equiv 0 \pmod{p}$ has at most *n* incongruent solutions (mod *p*).

(f) Prove that for a Pythagorean primitive triple (x, y, z), $\frac{12}{xyz}$. Hence prove that 4 + 260/xyz.

GROUP-C

- 3. Answer any *two* questions: (a) (i) If p be an odd prime, show that there are an equal number of quadratic residues 6+6and quadratic non-residues of *p*.
 - (ii) Evaluate the values of $\left(\frac{11}{23}\right)$ and $\left(\frac{6}{31}\right)$.

(b) (i) State Wilson's theorem. Is the converse true? Justify. (2+4)+6(ii) Show that $28! + 233 \equiv 0 \pmod{899}$.

(c) (i) State and prove Chinese Remainder theorem.

- (ii) Solve: $x \equiv 3 \pmod{6}$ $x \equiv 5 \pmod{7}$ $x \equiv 2 \pmod{11}$
- (d) (i) Prove that 2^k has no primitive roots $\forall k \ge 3$.

(ii) Let p be an odd prime. Prove that the quadratic congruence $x^2 + 1 \equiv 0 \pmod{p}$ has a solution iff $p \equiv 1 \pmod{4}$.

DSE2B

MECHANICS

GROUP-A

- 1. Answer any *four* questions:
 - (a) What are the forces that can be omitted from the equation of virtual work?
 - (b) Find the centre of gravity of a circular area when the density varies as square of the distance from the diameter.
 - (c) Find the minimum time of oscillation of a given compound pendulum.

2

 $3 \times 4 = 12$

 $12 \times 2 = 24$

6+6

6+6

6

6

6

UG/CBCS/B.Sc./Hons./5th Sem./Mathematics/MATHDSE2/Revised & Old/2023

- (d) Find the moment of inertia of the solid cone about its axes.
- (e) State energy test of stability.
- (f) An artificial satellite goes round the earth in 90 minutes in a circular orbit. Calculate the height of the satellite above the earth, taking the earth to be a sphere of radius 6370 km and g at the orbit of the satellite to be 980 cm/sec².

GROUP-B

2. Answer any *four* questions:

(a) A particle is projected in a medium whose resistance is proportional to the cube of the velocity and no other forces act on the particle. While the velocity diminishes from v_1 to v_2 , the particle traverses a distance *d* in time *t*, show that

$$\frac{d}{t} = \frac{2v_1v_2}{v_1 + v_2}$$

- (b) Find the condition that a given system of forces can be combined into a single force.
- (c) Show that the Kinetic Energy of a body of mass M moving in two dimensions is given by

$$\frac{1}{2}Mv^2 + \frac{1}{2}Mk^2\dot{\theta}^2$$

where k is the radius of gyration of the body about a line through center of inertia and perpendicular to the motion.

(d) A uniform rod OA, of length 2a, free to turn about its end O, revolves with uniform angular velocity ω about a vertical OZ, through 0 and is inclined at a constant angle α

to *OZ*. Show that the value of α is either 0 or $\cos^{-1}\left(\frac{3g}{4a\omega^2}\right)$.

- (e) Describe the motion of a particle under a force which is always directed towards a fixed point and varies inversely as the square of the distance from that point.
- (f) If each of a system of coplanar forces be replaced by three forces acting along the sides of a triangle *ABC* in the plane of the forces, of type p_iBC , q_iCA and r_iAB . Show that the necessary and sufficient conditions that the system reduces to a couple are $\sum_i p_i = \sum_i q_i = \sum_i r_i$.

GROUP-C

- 3. Answer any *two* questions:
 - (a) (i) A string of length 'a' forms the shorter diagonal of a rhombus formed by four uniform rods, each of length 'b' and weight 'w', which are hanged together. If one of the rods be supported in a horizontal position, prove that the tension of the

string is
$$\frac{2w(2b-a^2)}{b\sqrt{4b^2-a^2}}.$$

(ii) Four forces, each of magnitude P act on a rigid body, three of the forces act along the rectangular Cartesian Co-ordinate axis of x, y, z while the fourth force acts along the line

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$$

3

Find the equation of the central axis of the system.

 $12 \times 2 = 24$

 $6 \times 4 = 24$

UG/CBCS/B.Sc./Hons./5th Sem./Mathematics/MATHDSE2/Revised & Old/2023

- (b) (i) A particle is projected with velocity V along a smooth horizontal plane on a 6+6 medium whose resistance per unit mass is μ times the cube of the velocity. Show that the velocity at a time t is $\frac{V}{\sqrt{1+2\mu V^2 t}}$.
 - (ii) Find the co-ordinates of the centre of gravity of the arc of the astroid $x^{2/3} + y^{2/3} = a^{2/3}$ which lies in the positive quadrant.
- (c) (i) A plank of mass M and length 2a, is initially at rest along a line of greatest slope on a smooth plane, inclined at an angle α to the horizon and a man of mass M', starting from the upper end walks down the plank so that it does not move. Show that he will reach the other end in time $\sqrt{\frac{2M'a}{(M+M')g\sin\alpha}}$, where a is the length of the plank.
 - (ii) If *T* be the time period of a satellite circling round the earth at a distance *R* from the earth's centre, then prove that $r = \sqrt[3]{\frac{gRT^2}{4\pi^2}}$, where g = acceleration due to gravity on the earth's surface and *R* = the radius of the earth.

×

- (d) (i) A triangular lamina *ABC* oscillates about the perpendicular from *A* on *BC*, the perpendicular being horizontal. Find the length of the simple equivalent pendulum.
 - (ii) State and prove Principle of Conservation of Energy.

6+6