

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 5th Semester Examination, 2023

CC11-Physics

Quantum Mechanics and Applications

The figures in the margin indicate full marks.

GROUP-A

1. Answer any five questions from the following:
(a) Calculate the uncertainty in momentum of an electron if the uncertainty in its position is 0.4 nm .
(b) Only Hermitian operators are associated with physical observables. Why?
(c) For a particle of mass m in one dimensional harmonic oscillator potential of the form $V(x)=\frac{1}{2} m \omega^{2} x^{2}$, the first excited eigen state is $\psi(x) \sim x e^{-a x^{2}}$. Write the value of a.
(d) If A and B are two operators, then show that $\left[A, B^{-1}\right]=-B^{-1}[A, B] B^{-1}$.
(e) Find the probability current density corresponding to $\psi=A e^{-\alpha x}$, where $\alpha=\phi$ a real constant and $A=$ a complex constant.
(f) What is the Born's interpretation of a wave-function?
(g) Why is ${ }^{4} \mathrm{D}_{1 / 2}$ term not split in a magnetic field? Explain.
(h) If $\psi(x)=\sin 3 x$ is an eigenfunction of the operator $\frac{d^{2}}{d x^{2}}$, then find out its corresponding eigenvalue.

GROUP-B

Answer any three questions from the following

2. (a) What is the wavefunction for a free particle? Explain why this wavefunction cannot describe a localised particle.
(b) Normalise the wavefunction $\psi(x)=\frac{A}{\sqrt{x^{2}+\alpha^{2}}}$ in the region $-\infty<x<\infty$.
3. (a) Show that if \hat{A}, \hat{B} are hermitian then $i[A, B]$ is hermitian.
(b) The wavefunction of a particle is given as $N x e^{-x^{2} / 2 \sigma^{2}}$ where N is the normalising constant and σ is a constant. Where is the most probable location of the particle?
4. Define Larmor frequency. Calculate the Lande's g-factor for the ${ }^{2} \mathrm{P}_{3 / 2}$ state. $1+2+2$ Distinguish between LS and JJ coupling scheme S.
5. Consider an infinitely deep one dimensional zero potential well of width ' a ' in which a particle of mass ' m ' has orthonormalised energy eigenstates $\psi_{1}(x), \psi_{2}(x), \cdots \cdots$ with energies $E_{1}, E_{2}, \cdots \cdots$ respectively. Suppose particle exists at $t=0$ in the state given by

$$
\psi(x, 0)=\frac{1}{\sqrt{6}} \psi_{1}(x)+\frac{i}{\sqrt{2}} \psi_{2}(x)+\frac{1}{\sqrt{3}} \psi_{3}(x)
$$

(i) What is the probability of obtaining the energy-values E_{1}, E_{2}, E_{3} ?
(ii) How will such a state evolve with time?
(iii) Find average value of energy.
(iv) Discuss whether $E=\frac{49 \pi^{2} \hbar^{2}}{200 m a^{2}}$ can be an allowed energy value?
6. Calculate the expectation value of r for the ground state (1 s -state) of a hydrogen atom. The unnormalised ground state wavefunction is $e^{-r / a_{0}}$, where a_{0} is the Bohr radius.

GROUP-C

Answer any two questions from the following
7. A particle of mass m moving along a line with energy E is incident from left on a step potential $V(x)$,

$$
\begin{aligned}
V(x) & =0 & \text { for } & x<0 \\
& =V_{0} & \text { for } & x>0,
\end{aligned}
$$

V_{0} being a constant.
(a) Write down the time independent Schrödinger equation for the system.
(b) Obtain the solution of the wave equation for (i) $E>0$ and (ii) $0<E<V_{0}$, illustrating the nature of the solutions with rough sketches.
(c) Calculate the transmission coefficient for the latter case and compare it with the classical result. Show that the sum of transmission and reflection coefficient is unity.
8. Consider the Gaussian wave packet $e^{-x^{2} / 2 \sigma^{2}} . e^{i p x / \hbar^{x}}$.
(a) Normalise the function.
(b) Show that it corresponds to minimum uncertainty product.

UG/CBCS/B.Sc./Hons./5th Sem./Physics/PHYSCC11/2023

9. (a) Write down Schrödinger equation for the electron of H -atom assuming the nucleus to be stationary. By separation of variables, obtain the radial equation. The normalised wavefunction of the ground state of H -atom is given by

$$
\psi(r)=\frac{1}{\sqrt{\pi} a_{0}^{3 / 2}} e^{-r / a_{0}}
$$

where $a_{0}=$ Bohr radius. Find the distance from the nucleus at which the electron is most likely to be found.
(b) What do you mean by degeneracy of a state?
10.(a) At time $t=0$, the wavefunction of hydrogen atom is

$$
\psi(\vec{r}, 0)=\frac{1}{\sqrt{10}}\left(2 \psi_{100}+\psi_{210}+\sqrt{2} \psi_{211}+\sqrt{3} \psi_{2,1,-1}\right)
$$

the subscripts indicate the quantum numbers n, l and m. Find
(i) the expectation value of energy of the system
(ii) the probability of finding the system with $l=1, m=1$?
(b) Discuss the quantum mechanical theory of anomalous Zeeman effect, with special reference to Zeeman pattern for D_{1} and D_{2} lines of sodium. Draw a neat diagram to illustrate the Zeeman splitting of D_{1} and D_{2} lines of sodium.

