
 'समानो मन्त्र: समितिः समानी'

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 2nd Semester Examination, 2022

CC3-MATHEMATICS

Real Analysis

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

Answer any four questions from the following

1. Prove that $\mathbb{N} \times \mathbb{N}$ is an enumerable set.
2. Examine whether the sequence $\left\{1+\frac{1}{1!}+\frac{1}{2!}+\ldots \ldots . .+\frac{1}{n!}\right\}$ is a Cauchy sequence. 3
3. When is a series of constant terms called conditionally convergent? Give an 3 example.
4. Is arbitrary union of compact sets a compact set? Justify your answer.
5. Check whether the set $\left\{-1+\frac{1}{n}, n \in \mathbb{N}\right\}$ is closed or not. 3
6. Find $\overline{\lim } U_{n}$ and $\underline{\lim } U_{n}$, where $U_{n}=n^{(-1)^{n}}$.

GROUP-B

Answer any four questions from the following

7. Show that the sequence $\sqrt{a}, \sqrt{a \sqrt{a}}, \sqrt{a \sqrt{a \sqrt{a}}}, \ldots \ldots . .(a>0)$ is convergent.
8. (a) Give example of two distinct sets A and B such that int $A=\operatorname{int} B$.
(b) Prove that the set $S=\{x \in \mathbb{R}: \sin x \neq 0\}$ is an open set.
9. Define compact set. Prove that closed and bounded subset of real numbers is compact.
10.(a) Define derived set. Obtain derived set of $\left\{\frac{(-1)^{m}}{m}+\frac{1}{n}: m, n \in \mathbb{N}\right\}$.
(b) Prove that $\sqrt{2}$ is not a rational number.
10. Use comparison test to prove that the series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges if $p>1$ and diverges if $p \leq 1$.
12.(a) Use Cauchy's criterion to prove that the sequence $\left\{1+\frac{1}{2}+\frac{1}{3}+\ldots \ldots . .+\frac{1}{n}\right\}$ does not converge.
(b) Find all the sub-sequential limits of the sequence $\left\{\sin \frac{n \pi}{3}\right\}$.

GROUP-C

Answer any two questions from the following

13.(a) Let $\sum_{n=1}^{\infty} U_{n}$ be a positive term series such that $\lim _{n \rightarrow \infty} \sqrt[n]{U_{n}}=l$. Prove that the series converges if $l<1$ and diverges if $l>1$.
(b) If $a_{n}>0 \forall n$. Show that $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} \frac{a_{n}}{1+a_{n}}$ converge or diverge together.
(c) Test the convergence of the series $\frac{2^{2}}{3^{2}}+\frac{2^{2} \cdot 4^{2}}{3^{2} \cdot 5^{2}}+\frac{2^{2} \cdot 4^{2} \cdot 6^{2}}{3^{2} \cdot 5^{2} \cdot 7^{2}}+\ldots \ldots .$.
14.(a) Show that the set of real numbers \mathbb{R} is uncountable.
(b) Show that the derived set of any bounded set is also bounded set.
15.(a) Prove that every bounded sequence of real numbers has a convergent subsequence.
(b) Prove that the sequence $\left\{x_{n}\right\}$, where $x_{1}=\sqrt{7}$ and $x_{n}=\sqrt{7+x_{n-1}}$ for $n=2,3$, $4, \ldots$. , is convergent.
(c) If $\left\{x_{n}\right\}$ is a sequence of positive real numbers converging to l, then show that $\lim _{n \rightarrow \infty} \sqrt[n]{x_{1} x_{2} \ldots . . x_{n}}=l$.
16.(a) Let $S=\left\{x: x \in \mathbb{Q}\right.$ and $\left.x^{2}<2\right\}$, where \mathbb{Q} is the set of all rational numbers. Show that $\sup S \notin \mathbb{Q}$.
(b) Let $S=(0,1]$ and $T=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$. Show that $S-T$ is an open set.

