

UNIVERSITY OF NORTH BENGAL B.Sc. Honours 2nd Semester Examination, 2022

CC3-MATHEMATICS

REAL ANALYSIS

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

	Answer any <i>four</i> questions from the following	$3 \times 4 = 12$
1.	Prove that $\mathbb{N} \times \mathbb{N}$ is an enumerable set.	3
2.	Examine whether the sequence $\left\{1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}\right\}$ is a Cauchy sequence.	3
3.	When is a series of constant terms called conditionally convergent? Give an example.	3
4.	Is arbitrary union of compact sets a compact set? Justify your answer.	3
5.	Check whether the set $\{-1 + \frac{1}{n}, n \in \mathbb{N}\}$ is closed or not.	3
6.	Find $\overline{\lim} U_n$ and $\underline{\lim} U_n$, where $U_n = n^{(-1)^n}$.	3

GROUP-B

	Answer any <i>jour</i> questions from the following	0×4 − 24
7.	Show that the sequence \sqrt{a} , $\sqrt{a\sqrt{a}}$, $\sqrt{a\sqrt{a\sqrt{a}}}$, (<i>a</i> > 0) is convergent.	6
8. (a)) Give example of two distinct sets A and B such that int $A = int B$.	3
(b)) Prove that the set $S = \{x \in \mathbb{R} : \sin x \neq 0\}$ is an open set.	3

.

e 11

9. Define compact set. Prove that closed and bounded subset of real numbers is 6 compact.

10.(a) Define derived set. Obtain derived set of $\left\{\frac{(-1)^m}{m} + \frac{1}{n}: m, n \in \mathbb{N}\right\}$.

(b) Prove that $\sqrt{2}$ is not a rational number.

2

n 4

- 11. Use comparison test to prove that the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if p > 1 and 6 diverges if $p \le 1$.
- 12.(a) Use Cauchy's criterion to prove that the sequence $\left\{1+\frac{1}{2}+\frac{1}{3}+\dots+\frac{1}{n}\right\}$ does 4 not converge.
 - (b) Find all the sub-sequential limits of the sequence $\{\sin \frac{n\pi}{3}\}$. 2

GROUP-C

Answer any *two* questions from the following $12 \times 2 = 24$

6

3

13.(a) Let $\sum_{n=1}^{\infty} U_n$ be a positive term series such that $\lim_{n \to \infty} \sqrt[n]{U_n} = l$. Prove that the series 5 converges if l < 1 and diverges if l > 1.

(b) If
$$a_n > 0 \quad \forall n$$
. Show that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$ converge or diverge together. 3

(c) Test the convergence of the series
$$\frac{2^2}{3^2} + \frac{2^2 \cdot 4^2}{3^2 \cdot 5^2} + \frac{2^2 \cdot 4^2 \cdot 6^2}{3^2 \cdot 5^2 \cdot 7^2} + \dots$$
 4

- 14.(a) Show that the set of real numbers \mathbb{R} is uncountable. 6
 - (b) Show that the derived set of any bounded set is also bounded set.
- 15.(a) Prove that every bounded sequence of real numbers has a convergent subsequence. 5
 - (b) Prove that the sequence $\{x_n\}$, where $x_1 = \sqrt{7}$ and $x_n = \sqrt{7 + x_{n-1}}$ for $n = 2, 3, 4, \dots$, is convergent.
 - (c) If $\{x_n\}$ is a sequence of positive real numbers converging to l, then show that $\lim_{n \to \infty} \sqrt[n]{x_1 x_2 \dots x_n} = l.$
- 16.(a) Let $S = \{x: x \in \mathbb{Q} \text{ and } x^2 < 2\}$, where \mathbb{Q} is the set of all rational numbers. Show that $\sup S \notin \mathbb{Q}$.
 - (b) Let $S = \{0, 1\}$ and $T = \{\frac{1}{n} : n \in \mathbb{N}\}$. Show that S T is an open set. 6

×