

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 2nd Semester Examination, 2022

CC4-MATHEMATICS

DIFFERENTIAL EQUATION AND VECTOR CALCULUS

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

	Answer any <i>four</i> questions from the following	3×4 = 12
1.	Verify if $exp(x)$ and $exp(2x)$ are independent functions.	3
2.	Solve: $\frac{d^2 y}{dx^2} + \left(\frac{dy}{dx}\right)^2 + 1 = 0$	3
3.	If $\vec{r} = \cos(nt)\hat{i} + \sin(nt)\hat{j}$, where <i>n</i> is a constant and <i>t</i> varies. Show that	3
	$\vec{r} \times \frac{d\vec{r}}{dt} = nk$.	
4.	Find the directional derivative of $\phi = xy^2z + 4x^2z$ at (-1, 1, 2) along the direction $(2\hat{i} + \hat{j} - 2\hat{k})$.	3
5.	Find the unit tangent vector at the point where $t = 2$ on the curve $x = t^2 + 1$, $y = 4t - 3$, $z = 2t^2 - 6t$.	3
6.	If $y = \exp(-x^2)$ is a solution of $xy'' + \alpha y' + \beta x^3 y = 0$ for any two real numbers α , β then find $\alpha\beta$.	3

GROUP-B

Answer any *four* questions from the following $6 \times 4 = 24$

7. Solve:
$$(D^2 - 4D + 4)y = x^2 + e^x + \sin(2x)$$

8. Find the workdone in moving a particle around a circle in xy plane if the circle has centre at origin and radius 3 and the force field is given by $\vec{F} = (2x - y + z)\hat{i} + (x + y - z^2)\hat{j} + (3x - 2y + 4z)\hat{k}$.

9. Let
$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$$
, $r = |\vec{r}|$ and $f(r)$ is a scalar function possessing first and
2nd order derivatives prove that $\nabla^2 f(r) = \frac{d^2 f}{dr^2} + \frac{2}{r} \frac{df}{dr}$.

6

6

UG/CBCS/B.Sc./Hons./2nd Sem./Mathematics/MATHCC4/2022

10. Show that
$$\frac{\partial^2 \vec{f}}{\partial x \partial y} = \frac{\partial^2 \vec{f}}{\partial y \partial x}$$
, where $\vec{f} = (2x^2y - x^4)\hat{i} + (e^{xy} - y\sin x)\hat{j} + x^2\cos y\hat{k}$.

11. Find the characteristic roots of the following system and hence solve it.

$$\dot{x} = 3x + 2y$$

$$\dot{y} = -5x + y$$

let's equation: $(x+1)^2 y'' + (x+1)y' - y = 0$
6

6

12. Solve Euler's equation: $(x+1)^2 y'' + (x+1)y' - y = 0$

GROUP-C

Answer any *two* questions from the following $12 \times 2 = 24$

13.(a) Find three independent solutions of
$$x^3 \frac{d^3 y}{dx^3} - 6x \frac{dy}{dx} + 12y = 0$$
.

- (b) Show that for a differentiable function f(r) one must have $\operatorname{curl} \{f(r)\vec{r}\} = \vec{0}$, 6 where $r = |\vec{r}|$.
- 14.(a) Prove that $\vec{F} = (y^2 \cos x + z^3)\hat{i} + (2y \sin x 4)\hat{j} + (3xz^2 + 2)\hat{k}$ is a conservative 6 force field. Find the scalar potential V such that $\vec{F} = \nabla V$.
 - (b) A particle *p* is moving on a circle of radius *r* with constant angular velocity $\theta = d\theta/dt$. Show that the acceleration is $-\omega^2 \vec{r}$.

15.(a) Solve the differential equation by the method of undetermined co-efficients 6

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} - 3y = 2e^x - 10\sin x$$

- (b) Prove that a necessary and sufficient condition for a vector $\vec{r} = \vec{f}(t)$ to have a 6 constant direction is $\vec{f} \times \frac{d\vec{f}}{dt} = \vec{0}$.
- 16.(a) Obtain expressions for radial and transverse velocities of a moving particle in a plane and hence show that the radial and transverse accelerations are $\frac{d^2r}{dt^2} - r\left(\frac{d\theta}{dt}\right)^2 \text{ and } \frac{1}{r}\frac{d}{dt}\left(r^2\frac{d\theta}{dt}\right).$ (b) Solve: $(x+2)^2\frac{d^2y}{dx^2} + (2+x)\frac{dy}{dx} + 4y = 2\sin\{2\log(x+2)\}$ 6

×-