

UNIVERSITY OF NORTH BENGAL B.Sc. Honours 2nd Semester Examination, 2022

GE1-P2-MATHEMATICS

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks. All symbols are of usual significance.

The question paper contains MATHGE-I, MATHGE-II, MATHGE-II, MATHGE-IV & MATHGE-V. The candidates are required to answer any *one* from the *five* courses. Candidates should mention it clearly on the Answer Book.

MATHGE-I

CAL. GEO AND DE.

GROUP-A

Answer any <i>four</i> questions from the following	3×4 = 12
Evaluate: $\int_{0}^{\pi/4} \tan^5 x dx$	3
Find the equation of the curve $3x^2 + 3y^2 + 6x - 18y - 14 = 0$ referred to parallel axes through the point (-1, 3).	3
Determine the concavity and the inflexion points of $f(x) = x^3 + 3x^2 - 9x + 8$.	3
Transform the following equation into Cartesian form $r = 2\sin 3\theta$.	3
Solve: $(2x\cos y + 3x^2y)dx + (x^3 - x^2\sin y - y)dy = 0$; $y(0) = 2$	3
Find the asymptote of the curve $x^2y^2 = a^2(x^2 + y^2)$.	3
GROUP-B	
Answer any <i>four</i> questions from the following	$6 \times 4 = 24$
Find the trace of $y^2(2a-x) = x^3$.	6
Show that $\int \tan^2 x \sec^4 x dx = \frac{1}{2} \tan^5 x + \frac{1}{2} \tan^3 x$	6

- 8. Show that $\int \tan^2 x \sec^4 x \, dx = \frac{1}{5} \tan^5 x + \frac{1}{3} \tan^3 x$. 6
- 9. If $y = e^{3\sin^{-1}x}$, then show that $(1 x^2)y_{n+2} (2n+1)xy_{n+1} (n^2 + 9)y_n = 0$. 6

2059

1.

2.

3.

4.

5.

6.

7.

- 10. Locate the vertex and focus of the parabola $x^2 4x 12y 15 = 0$, write the equation of the directrix axis and tangent at the vertex. 6
- 11. Find the envelope of $x^2 \sin \alpha + y^2 \cos \alpha = a^2$, where α is a parameter. 6

12. Solve:
$$xy - \frac{dy}{dx} = y^3 e^{-x^2}$$
 6

GROUP-C

Answer any *two* questions from the following $12 \times 2 = 24$

13.(a) If
$$y = \frac{\sin^{-1} x}{\sqrt{1 - x^2}}$$
, $|x| < 1$, show that $(1 - x^2)y_{n+2} - (2n+3)xy_{n+1} - (n+1)^2y_n = 0$. 6

(b) If
$$I_{m,n} = \int_{0}^{\pi/2} \cos^m x \sin nx \, dx$$
, then show that $I_{m,n} = \frac{1}{m+n} + \frac{m}{m+n} I_{m-1, n-1}$.

14.(a) Determine the value of α and β for which $\lim_{x \to 0} \frac{\sin 3x + \alpha \sin 2x + \beta \sin x}{x^5}$ exists 6 and find the limit.

(b) Show that the perpendicular from the origin on the generators of the paraboloid $\frac{x^2}{a^2} - \frac{y^2}{b^2} = \frac{2z}{c}$ lie on the cone $\left(\frac{x}{a} - \frac{y}{b}\right)(ax - by) + 2z^2 = 0$.

15.(a) Solve:
$$\frac{dy}{dx} + x \sin xy = e^x y^n$$
 6

(b) Reduce the equation $\sin y \frac{dy}{dx} = \cos x (2\cos y - \sin^2 x)$ to a linear equation and 6 hence solve it.

- 16.(a) Reduce the equation $x^2 + y^2 + z^2 2xy 2yz + 2zx + x 4y + z + 1 = 0$ to its canonical form and determine the type of the quadric represented by it. 6
 - (b) Determine the concavity and the inflection points of the function 6 $f(x) = 3x^4 - 4x^2 + 1$.

MATHGE-II ALGEBRA

GROUP-A Answer any *four* questions from the following

 $3 \times 4 = 12$

- 1. If k be a positive integer then prove that gcd(ka, kb) = k gcd(a, b).
- 2. Determine k so that the set S is linearly independent in \mathbb{R}^3 ; where $S = \{(1, 2, 1), (k, 3, 1), (2, k, 0)\}.$

3. If a, b, c be three positive real numbers, prove that $\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \ge 3$.

- 4. If λ be an eigenvalue of $A \in M_n(\mathbb{R})$, prove that λ^m is an eigenvalue of A^m .
- 5. Find mod z and arg z, where $z = i^i$.
- 6. Solve the equation $x^4 x^3 + 2x^2 2x + 4 = 0$, one root being 1 + i.

GROUP-B

Answer any *four* questions from the following $6 \times 4 = 24$

- 7. (a) Determine the rank of the matrix $\begin{pmatrix} 2 & 1 & 4 & 5 \\ 3 & 2 & 6 & 9 \\ 1 & 1 & 2 & 6 \end{pmatrix}$.
 - (b) Consider a matrix A whose eigenvalues are 1, -1 and 3. Then find trace $(A^3 3A^2)$.
- 8. (a) If *n* be a positive integer, prove that $\frac{1}{\sqrt{4n+1}} < \frac{3 \cdot 7 \cdot 11 \cdot \dots \cdot (4n-1)}{5 \cdot 9 \cdot 13 \cdot \dots \cdot (4n+1)} < \sqrt{\frac{3}{4n+3}}$.

(b) If α be a multiple root of order 3 of the equation $x^4 + bx^2 + cx + d = 0$, $(d \neq 0)$. 3 Show that $\alpha = -\frac{8d}{3c}$.

9. (a) Prove that $3^{2n} - 8n - 1$ is divisible by 64 for any non-negative integer *n*. 3

(b) Consider the function f: R→ (-1, 1), defined by f(x) = x/(1+|x|) for all x ∈ R.
 Prove that f is bijective.

10.(a) Let f: A → B and g: B → C be two functions. Then prove that if g ∘ f is bijective then f is injective and g is surjective. (b) What is the residue when 11⁴⁰ is divided by 8?

11.(a) Find the product of all the values of $(1+i)^{4/5}$.

(b) State the Cauchy-Schwartz inequality.

12.(a) For what values of 'a' the following system of equation is consistent?

$$x - y + z = 1$$
$$x + 2y + 4z = a$$
$$x + 4y + 6z = a2$$

(b) Give an example of a binary relation which is reflexive and transitive but not 2 symmetric.

2

4

3

GROUP-C

	Answer any two questions from the following	$12 \times 2 = 24$
13.(a)	State and prove the fundamental theorem of equivalence relation.	6
(b)	Let <i>n</i> be a positive integer and \mathbb{Z}_n denote the set of all congruence classes of \mathbb{Z} modulo <i>n</i> . Prove that the number of elements of \mathbb{Z}_n is finite.	6
14.(a)	Prove the following identities:	3+3
	(i) $\sin 5\theta = 16\sin^5 \theta - 20\sin^3 \theta + 5\sin \theta$	
	(ii) $\cos 5\theta = 16\cos^5 \theta - 20\cos^3 \theta + 5\cos \theta$	
(b)	Let <i>n</i> be a positive integer and <i>a</i> , <i>b</i> and <i>c</i> are integers such that $a \neq 0$. Then	6
	prove that $ab \equiv ac \pmod{n}$ if and only if $b \equiv c \pmod{\frac{n}{\gcd(a, n)}}$.	
15.(a)	State Cayley-Hamilton theorem for matrices. Use it to find A^{-1} and A^{50} , where $A = \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}$.	3+3
(b)	Find the rank of the following matrices of order <i>n</i> :	6
	(i) Nilpotent matrix	
	(ii) Idempotent matrix and	
	(iii) Involuntary matrix.	
16.(a)	Consider the mapping $f : \mathbb{Z}_0^+ \times \mathbb{Z} \longrightarrow \mathbb{Z}$, defined by $f(m, n) = 2^m (2n+1)$ for all $(m, n) \in \mathbb{Z}_0^+ \times \mathbb{Z}$. Prove that f is injective but not surjective. Here \mathbb{Z}_0^+ denotes the set of all non-negative integers.	4
(b)	Prove that composition of mappings is associative. Show by a counter example that composition of mapping is not commutative.	2+3
(c)	Apply Descarte's rule of signs to find the positive and pegative roots of the	3

(c) Apply Descarte's rule of signs to find the positive and negative roots of the 3 following equation:

$$4x^3 - 8x^2 - 19x + 26 = 0$$

MATHGE-III

DIFFERENTIAL EQUATION AND VECTOR CALCULUS GROUP-A

Answer any *four* questions from the following $3 \times 4 = 12$

1. Show that $f(t, x) = \frac{e^{-x}}{1+t^2}$ defined for 0 < x < p, 0 < t < N, where N is a 3 positive integer, satisfies Lipschitz condition with Lipschitz constant K = p.

- 2. Find the Wronskian of $\{1-x, 1+x, 1-3x\}$.
- 3. Examine continuity of the vector valued function $\vec{r} = t^3 \hat{i} + e^t \hat{j} + \frac{1}{t+3} \hat{k}$ at t = -3.
- 4. Find the directional derivative of $\phi = xy^2z + 4x^2z$ at (-1, 1, 2) in the direction $2\hat{i} + \hat{j} 2\hat{k}$.

5. Find the particular integral of
$$\frac{d^2y}{dx^2} + 4y = \sin 2x$$
. 3

6. Solve:
$$\frac{d^2x}{dt^2} - 3\frac{dx}{dt} + 2x = 0$$
, with $x(0) = 0$, $\frac{dx(0)}{dt} = 0$. 3

GROUP-B

Answer any *four* **questions from the following** $6 \times 4 = 24$

7. If y_1 and y_2 are solutions of $y'' + x^2y' + (1-x)y = 0$ such that $y_1(0) = 0$, 6 $y_2(0) = 1$, $y'_1(0) = 1$, $y'_2(0) = -1$, then find the Wronskian $W(y_1, y_2)$.

8. Solve by the method of variation of parameters
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = \frac{e^{-x}}{x^2}$$
. 6

9. Solve:
$$(D^3 - D^2 - 6D)y = (1 + x + x^2)e^x$$
, where $D \equiv \frac{d}{dx}$.

10. Solve:
$$4x' + 9y' + 44x + 49y = t$$

 $3x' + 7y' + 34x + 38y = e^{t}$ 6

11. If
$$\vec{A} = 3xy\hat{i} - 5z\hat{j} + 10x\hat{k}$$
, then evaluate $\int \vec{A} \cdot d\vec{r}$ along the curve *C* given by
 $x = t^2 + 1$, $y = 2t^2$, $z = t^3$ from $t = 1$ to $t = 2$.

12. Show that the vector field given by $\vec{A} = (y^2 + z^3)\hat{i} + (2xy - 5z)\hat{j} + (3xz^2 - 5y)\hat{k}$ 6 is conservative and find the scalar point function for the field.

GROUP-C

Answer any *two* questions from the following $12 \times 2 = 24$

13.(a) Find the general solution of
$$t^2y'' - 3ty' + 7y = 0$$
, $t > 0$.

(b) Solve:
$$(D-1)^2 (D^2+1) y = e^x + \sin^2 \frac{x}{2}$$
 6

14.(a) If
$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$$
, then show that $\vec{\nabla} \cdot \left\{ \frac{f(r)}{r} \vec{r} \right\} = \frac{1}{r^2} \frac{d}{dr} \{r^2 f(r)\}$.

(b) Prove that $\vec{\nabla} \cdot (\vec{F} \times \vec{G}) = \vec{G} \cdot (\vec{\nabla} \times \vec{F}) - \vec{F} \cdot (\vec{\nabla} \times \vec{G})$, where \vec{F} and \vec{G} are vector 6 point functions.

5

6

3

3

15.(a) Solve by method of undetermined coefficients.

$$(D^2 - 3D)y = x + e^x \sin x , \quad D \equiv \frac{d}{dx}$$

6

6

(b) Solve:
$$\frac{dx}{dt} + \frac{2}{t}(x-y) = 1$$
; $\frac{dy}{dt} + \frac{1}{t}(x+5y) = t$ 6

16.(a) If $\vec{F} = \phi \operatorname{grad} \phi$, then show that $\vec{F} \cdot \operatorname{curl} \vec{F} = 0$.

(b) Solve:
$$x^3 \frac{d^3 y}{dx^3} + 2x^2 \frac{d^2 y}{dx^2} + 2y = 10x + \frac{10}{x}$$
 6

MATHGE-IV

GROUP THEORY

GROUP-A

	Answer any <i>four</i> questions from the following	3×4 = 12
1.	Define normal subgroup of a group.	3
2.	Find all cyclic subgroups of the group $(\mathbb{Z}_7, +)$.	3
3.	Show that identity and inverse of an element in a group G are unique.	3
4.	Show that $(6 \ 5 \ 4 \ 3 \ 1 \ 2)$ is an odd permutation. Find the images of 3 and 4 if $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & & 3 \end{pmatrix}$ be an even permutation.	1+2
5.	Show that any infinite cyclic group is isomorphic to $(\mathbb{Z}, +)$.	3
6.	Show that centre of a group G is a subgroup of G .	3

GROUP-B

	Answer any <i>four</i> questions from the following	$6 \times 4 = 24$
7.	Define subgroup of a group G. Let H, K be two subgroups of a group G. Prove that HK is a subgroup of G if and only if $HK = KH$.	1+5
8.	Show that every cyclic group is commutative. Is the converse true? Justify your answer.	4+2
9.	Let <i>H</i> be a subgroup of <i>G</i> and let $a \in G$. Then show that $aH = H$ if and only if $a \in H$.	6
10.	State and prove Lagrange's theorem.	6
11.	Find all the homomorphisms from $\mathbb{Z}_{20} \longrightarrow \mathbb{Z}_{8}$. How many of them are onto?	5+1
12.	Find all the subgroups of $\mathbb{Z}/12\mathbb{Z}$. Find the subgroup lattice of D_4 .	3+3

GROUP-C

	Answer any two questions from the following	$12 \times 2 = 24$
13.(a)	Show that $G = \{1, -1, i, -i\}$ forms an abelian group with respect to multiplication.	6
(b)	In a group $(G, *)$, if $b^5 = e_G$ and $b * a * b^{-1} = a^2$, $\forall a, b \in G$, find the order of 'a'.	6
14.(a)	Let $\phi: (G, \circ) \to (G', *)$ be a homomorphism. Prove that ker ϕ is a normal subgroup of G .	4
(b)	Prove that order of $U(n)$ is even for $n \ge 3$.	2
(c)	Find all elements of order 5 in $(\mathbb{Z}_{40}, +)$. Find all the cyclic subgroups of $(\mathbb{Z}_{9}, +)$.	6
15.(a)	If <i>H</i> be a subgroup of a cyclic group <i>G</i> , then prove that the quotient group G/H is cyclic.	6
(b)	Prove that every permutation on a finite set is either a cycle or a product of disjoint cycles.	6
16.	Let H be a subgroup of G . Then show that the following conditions are equivalent:	
(a)	H is a normal subgroup of G .	4
(b)	$gHg^{-1} \subseteq H$, $\forall g \in G$	4
(c)	$gHg^{-1} = H$, $\forall g \in G$.	4

MATHGE-V

NUMERICAL METHODS

GROUP-A

Answer any *four* questions from the following $3 \times 4 = 12$

1. Show that
$$\Delta \log f(x) = \log \left[1 + \frac{\Delta f(x)}{f(x)} \right]$$
.

- 2. Find the number of significant figures in:
 - (i) $V_{\rm A} = 11.2461$ given its absolute error as 0.25×10^{-2} .
 - (ii) $V_{\rm T} = 1.5923$ given its relative error as 0.1×10^{-3} .
- 3. State the condition for convergence of Gauss-Seidel method for solving a system of equations. Are they necessary and sufficient?
- 4. Given the set of values of y = f(x):

x	2	4	6	8	10
у	5	10	17	29	50

Form the diagonal difference table and find $\Delta^2 f(6)$.

- What is the geometric representation of the Newton-Raphson method? 5.
- 6. Find the function whose first difference is e^x taking the step size h = 1.

GROUP-B

Answer any *four* questions from the following $6 \times 4 = 24$

7. The equation
$$x^2 + ax + b = 0$$
 has two real roots α , β . Show that the iteration 6
method $x_{k+1} = -\frac{ax_k + b}{x_k}$ is convergent near $x = \alpha$, if $|\alpha| > |\beta|$.

- What is interpolation? Establish Lagrange's polynomial interpolation formula. 8. 1 + 5
- Using the method of Newton-Raphson, find the root of $x^3 8x 4 = 0$ which 9. lies between 3 and 4, correct upto 4 decimal places.
- 10. Complete the following table:

x	10	15	20	25	30	35
f(x)	19.97	21.51	_	23.52	24.65	

Use Euler's method, solve the following problem for x = 0.1 by taking h = 0.02. 11. 6 d_{1} , y - r

$$\frac{dy}{dx} = \frac{y-x}{y+x} \quad \text{with} \quad y(0) = 1$$

Calculate the approximate value of $\int_{0}^{\pi/2} \sin x \, dx$, by Trapezoidal rule using 11 12. 6 ordinates.

GROUP-C

Answer any two questions from the following $12 \times 2 = 24$

13.(a) Given the following table:

x	0	5	10	15	20
f(x)	1.0	1.6	3.8	8.2	15.4

Construct the difference table and compute f(21) by Newton's Backward formula.

(b) Solve the system by Gauss-Jacobi iteration method:

$$x + y + 4z = 9$$

$$8x - 3y + 2z = 20$$

$$4x + 11y - z = 33$$

14.(a) Evaluate $\int_{0}^{\pi/2} \sqrt{1 - 0.162 \sin^2 \phi} \, d\phi$, by Simpson's $\frac{1}{3}$ rd rule, correct upto four 6

decimal places, taking six sub-interval.

(b) Show that Bisection method converges linearly.

6

3+3

6

6

6

15.(a) Use Picard's method to compute y(0.1) from the differential equation 6 $\frac{dy}{dx} = 1 + xy$ given y = 1, where x = 0.

(b) Define the operator
$$\Delta$$
. Prove that $\Delta^n \left(\frac{1}{x}\right) = \frac{(-1)^n n!}{x(x+1)(x+2)....(x+m)}$. 1+5

16.(a) Establish Newton's forward interpolation formula.6

6

(b) Use Gauss-elimination method to solve the following:

$$-10x_1 + 6x_2 + 3x_3 + 100 = 0$$

$$6x_1 - 5x_2 + 5x_3 + 100 = 0$$

$$3x_1 + 6x_2 - 10x_3 + 100 = 0$$

Correct upto three significant figures.

____×____