'समानो मन्त्रः समितिः समानी'

## UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 2nd Semester Examination, 2022

## GE1-P2-MATHEMATICS

Time Allotted: 2 Hours
Full Marks: 60
The figures in the margin indicate full marks.
All symbols are of usual significance.

The question paper contains MATHGE-I, MATHGE-II, MATHGE-III, MATHGE-IV \& MATHGE-V.
The candidates are required to answer any one from the five courses.
Candidates should mention it clearly on the Answer Book.


#### Abstract

MATHGE-I CAL. GEO AND DE. GROUP-A Answer any four questions from the following $3 \times 4=12$


1. Evaluate: $\int_{0}^{\pi / 4} \tan ^{5} x d x$.
2. Find the equation of the curve $3 x^{2}+3 y^{2}+6 x-18 y-14=0$ referred to parallel axes through the point $(-1,3)$.
3. Determine the concavity and the inflexion points of $f(x)=x^{3}+3 x^{2}-9 x+8$. 3
4. Transform the following equation into Cartesian form $r=2 \sin 3 \theta$. 3
5. Solve: $\left(2 x \cos y+3 x^{2} y\right) d x+\left(x^{3}-x^{2} \sin y-y\right) d y=0 \quad ; \quad y(0)=2 \quad 3$
6. Find the asymptote of the curve $x^{2} y^{2}=a^{2}\left(x^{2}+y^{2}\right)$. 3

## GROUP-B

## Answer any four questions from the following

7. Find the trace of $y^{2}(2 a-x)=x^{3}$.
8. Show that $\int \tan ^{2} x \sec ^{4} x d x=\frac{1}{5} \tan ^{5} x+\frac{1}{3} \tan ^{3} x$.
9. If $y=e^{3 \sin ^{-1} x}$, then show that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-\left(n^{2}+9\right) y_{n}=0$.
10. Locate the vertex and focus of the parabola $x^{2}-4 x-12 y-15=0$, write the equation of the directrix axis and tangent at the vertex.
11. Find the envelope of $x^{2} \sin \alpha+y^{2} \cos \alpha=a^{2}$, where $\alpha$ is a parameter.
12. Solve: $x y-\frac{d y}{d x}=y^{3} e^{-x^{2}}$

## GROUP-C

## Answer any two questions from the following

13.(a) If $y=\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}},|x|<1$, show that $\left(1-x^{2}\right) y_{n+2}-(2 n+3) x y_{n+1}-(n+1)^{2} y_{n}=0$.
(b) If $I_{m, n}=\int_{0}^{\pi / 2} \cos ^{m} x \sin n x d x$, then show that $I_{m, n}=\frac{1}{m+n}+\frac{m}{m+n} I_{m-1, n-1}$.
14.(a) Determine the value of $\alpha$ and $\beta$ for which $\lim _{x \rightarrow 0} \frac{\sin 3 x+\alpha \sin 2 x+\beta \sin x}{x^{5}}$ exists and find the limit.
(b) Show that the perpendicular from the origin on the generators of the paraboloid $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=\frac{2 z}{c}$ lie on the cone $\left(\frac{x}{a}-\frac{y}{b}\right)(a x-b y)+2 z^{2}=0$.
15.(a) Solve: $\frac{d y}{d x}+x \sin x y=e^{x} y^{n}$
(b) Reduce the equation $\sin y \frac{d y}{d x}=\cos x\left(2 \cos y-\sin ^{2} x\right)$ to a linear equation and hence solve it.
16.(a) Reduce the equation $x^{2}+y^{2}+z^{2}-2 x y-2 y z+2 z x+x-4 y+z+1=0$ to its canonical form and determine the type of the quadric represented by it.
(b) Determine the concavity and the inflection points of the function $f(x)=3 x^{4}-4 x^{2}+1$.

## MATHGE-II

## ALGEBRA <br> GROUP-A

Answer any four questions from the following

1. If $k$ be a positive integer then prove that $\operatorname{gcd}(k a, k b)=k \operatorname{gcd}(a, b)$.
2. Determine $k$ so that the set $S$ is linearly independent in $\mathbb{R}^{3}$; where $S=\{(1,2,1),(k, 3,1),(2, k, 0)\}$.

## UG/CBCS/B.Sc./Hons./2nd Sem./Mathematics/MATHGE2/2022

3. If $a, b, c$ be three positive real numbers, prove that $\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq 3$.
4. If $\lambda$ be an eigenvalue of $A \in M_{n}(\mathbb{R})$, prove that $\lambda^{m}$ is an eigenvalue of $A^{m}$.
5. Find $\bmod z$ and $\arg z$, where $z=i^{i}$.
6. Solve the equation $x^{4}-x^{3}+2 x^{2}-2 x+4=0$, one root being $1+i$.

## GROUP-B

## Answer any four questions from the following

7. (a) Determine the rank of the matrix $\left(\begin{array}{llll}2 & 1 & 4 & 3 \\ 3 & 2 & 6 & 9 \\ 1 & 1 & 2 & 6\end{array}\right)$.
(b) Consider a matrix $A$ whose eigenvalues are $1,-1$ and 3 . Then find trace $\left(A^{3}-3 A^{2}\right)$.
8. (a) If $n$ be a positive integer, prove that $\frac{1}{\sqrt{4 n+1}}<\frac{3 \cdot 7 \cdot 11 \cdot \ldots . . \cdot(4 n-1)}{5 \cdot 9 \cdot 13 \cdot \ldots . .(4 n+1)}<\sqrt{\frac{3}{4 n+3}}$.
(b) If $\alpha$ be a multiple root of order 3 of the equation $x^{4}+b x^{2}+c x+d=0,(d \neq 0)$. Show that $\alpha=-\frac{8 d}{3 c}$.
9. (a) Prove that $3^{2 n}-8 n-1$ is divisible by 64 for any non-negative integer $n$.
(b) Consider the function $f: \mathbb{R} \rightarrow(-1,1)$, defined by $f(x)=\frac{x}{1+|x|}$ for all $x \in \mathbb{R}$.

Prove that $f$ is bijective.
10.(a) Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be two functions. Then prove that if $g \circ f$ is bijective then $f$ is injective and $g$ is surjective.
(b) What is the residue when $11^{40}$ is divided by 8 ?
11.(a) Find the product of all the values of $(1+i)^{4 / 5}$.
(b) State the Cauchy-Schwartz inequality.
12.(a) For what values of ' $a$ ' the following system of equation is consistent?

$$
\begin{aligned}
& x-y+z=1 \\
& x+2 y+4 z=a \\
& x+4 y+6 z=a^{2}
\end{aligned}
$$

(b) Give an example of a binary relation which is reflexive and transitive but not symmetric.

## GROUP-C

Answer any two questions from the following
13.(a) State and prove the fundamental theorem of equivalence relation.
(b) Let $n$ be a positive integer and $\mathbb{Z}_{n}$ denote the set of all congruence classes of $\mathbb{Z}$ modulo $n$. Prove that the number of elements of $\mathbb{Z}_{n}$ is finite.
14.(a) Prove the following identities:
(i) $\sin 5 \theta=16 \sin ^{5} \theta-20 \sin ^{3} \theta+5 \sin \theta$
(ii) $\cos 5 \theta=16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta$
(b) Let $n$ be a positive integer and $a, b$ and $c$ are integers such that $a \neq 0$. Then prove that $a b \equiv a c(\bmod n)$ if and only if $b \equiv c\left(\bmod \frac{n}{\operatorname{gcd}(a, n)}\right)$.
15.(a) State Cayley-Hamilton theorem for matrices. Use it to find $A^{-1}$ and $A^{50}$, where $A=\left(\begin{array}{ll}1 & 0 \\ 2 & 0\end{array}\right)$.
(b) Find the rank of the following matrices of order $n$ :
(i) Nilpotent matrix
(ii) Idempotent matrix and
(iii) Involuntary matrix.
16.(a) Consider the mapping $f: \mathbb{Z}_{0}^{+} \times \mathbb{Z} \rightarrow \mathbb{Z}$, defined by $f(m, n)=2^{m}(2 n+1)$ for all $(m, n) \in \mathbb{Z}_{0}^{+} \times \mathbb{Z}$. Prove that $f$ is injective but not surjective. Here $\mathbb{Z}_{0}^{+}$denotes the set of all non-negative integers.
(b) Prove that composition of mappings is associative. Show by a counter example that composition of mapping is not commutative.
(c) Apply Descarte's rule of signs to find the positive and negative roots of the following equation:

$$
4 x^{3}-8 x^{2}-19 x+26=0
$$

## MATHGE-III <br> DIFFERENTIAL EQUATION AND VECTOR CALCULUS <br> GROUP-A

## Answer any four questions from the following

1. Show that $f(t, x)=\frac{e^{-x}}{1+t^{2}}$ defined for $0<x<p, 0<t<N$, where $N$ is a positive integer, satisfies Lipschitz condition with Lipschitz constant $K=p$.
2. Find the Wronskian of $\{1-x, 1+x, 1-3 x\}$.
3. Examine continuity of the vector valued function $\vec{r}=t^{3} \hat{i}+e^{t} \hat{j}+\frac{1}{t+3} \hat{k}$ at $t=-3$.
4. Find the directional derivative of $\phi=x y^{2} z+4 x^{2} z$ at $(-1,1,2)$ in the direction $2 \hat{i}+\hat{j}-2 \hat{k}$.
5. Find the particular integral of $\frac{d^{2} y}{d x^{2}}+4 y=\sin 2 x$.
6. Solve: $\frac{d^{2} x}{d t^{2}}-3 \frac{d x}{d t}+2 x=0$, with $x(0)=0, \frac{d x(0)}{d t}=0$.

## GROUP-B

## Answer any four questions from the following

7. If $y_{1}$ and $y_{2}$ are solutions of $y^{\prime \prime}+x^{2} y^{\prime}+(1-x) y=0$ such that $y_{1}(0)=0$, $y_{2}(0)=1, y_{1}^{\prime}(0)=1, y_{2}^{\prime}(0)=-1$, then find the Wronskian $W\left(y_{1}, y_{2}\right)$.
8. Solve by the method of variation of parameters $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=\frac{e^{-x}}{x^{2}}$.
9. Solve: $\left(D^{3}-D^{2}-6 D\right) y=\left(1+x+x^{2}\right) e^{x}$, where $D \equiv \frac{d}{d x}$.
10. Solve: $4 x^{\prime}+9 y^{\prime}+44 x+49 y=t$

$$
\begin{equation*}
3 x^{\prime}+7 y^{\prime}+34 x+38 y=e^{t} \tag{6}
\end{equation*}
$$

11. If $\vec{A}=3 x y \hat{i}-5 z \hat{j}+10 x \hat{k}$, then evaluate $\int \vec{A} \cdot d \vec{r}$ along the curve $C$ given by 6 $x=t^{2}+1, y=2 t^{2}, z=t^{3}$ from $t=1$ to $t=2$.
12. Show that the vector field given by $\vec{A}=\left(y^{2}+z^{3}\right) \hat{i}+(2 x y-5 z) \hat{j}+\left(3 x z^{2}-5 y\right) \hat{k}$ is conservative and find the scalar point function for the field.

## GROUP-C

## Answer any two questions from the following

13.(a) Find the general solution of $t^{2} y^{\prime \prime}-3 t y^{\prime}+7 y=0, t>0$.
(b) Solve: $(D-1)^{2}\left(D^{2}+1\right) y=e^{x}+\sin ^{2} \frac{x}{2}$
14.(a) If $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$, then show that $\vec{\nabla} \cdot\left\{\frac{f(r)}{r} \vec{r}\right\}=\frac{1}{r^{2}} \frac{d}{d r}\left\{r^{2} f(r)\right\}$.
(b) Prove that $\vec{\nabla} \cdot(\vec{F} \times \vec{G})=\vec{G} \cdot(\vec{\nabla} \times \vec{F})-\vec{F} \cdot(\vec{\nabla} \times \vec{G})$, where $\vec{F}$ and $\vec{G}$ are vector point functions.
15.(a) Solve by method of undetermined coefficients.

$$
\left(D^{2}-3 D\right) y=x+e^{x} \sin x, \quad D \equiv \frac{d}{d x}
$$

(b) Solve: $\quad \frac{d x}{d t}+\frac{2}{t}(x-y)=1 \quad ; \quad \frac{d y}{d t}+\frac{1}{t}(x+5 y)=t$
16.(a) If $\vec{F}=\phi \operatorname{grad} \phi$, then show that $\vec{F} \cdot \operatorname{curl} \vec{F}=0$.
(b) Solve: $x^{3} \frac{d^{3} y}{d x^{3}}+2 x^{2} \frac{d^{2} y}{d x^{2}}+2 y=10 x+\frac{10}{x}$

## MATHGE-IV

## GROUP THEORY

## GROUP-A

## Answer any four questions from the following

1. Define normal subgroup of a group.
2. Find all cyclic subgroups of the group $\left(\mathbb{Z}_{7},+\right)$.
3. Show that identity and inverse of an element in a group $G$ are unique.
4. Show that ( $\left.\begin{array}{llllll}6 & 5 & 4 & 3 & 1 & 2\end{array}\right)$ is an odd permutation. Find the images of 3 and 4 if $1+2$ $\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 4 & 1 & & & 3\end{array}\right)$ be an even permutation.
5. Show that any infinite cyclic group is isomorphic to $(\mathbb{Z},+)$.
6. Show that centre of a group $G$ is a subgroup of $G$.

## GROUP-B

## Answer any four questions from the following

7. Define subgroup of a group $G$. Let $H, K$ be two subgroups of a group $G$. Prove that $H K$ is a subgroup of $G$ if and only if $H K=K H$.
8. Show that every cyclic group is commutative. Is the converse true? Justify your answer.
9. Let $H$ be a subgroup of $G$ and let $a \in G$. Then show that $a H=H$ if and only if $a \in H$.
10. State and prove Lagrange's theorem.
11. Find all the homomorphisms from $\mathbb{Z}_{20} \rightarrow \mathbb{Z}_{8}$. How many of them are onto? 5+1
12. Find all the subgroups of $\mathbb{Z} / 12 \mathbb{Z}$. Find the subgroup lattice of $D_{4}$. $3+3$

## GROUP-C

Answer any two questions from the following
13.(a) Show that $G=\{1,-1, i,-i\}$ forms an abelian group with respect to multiplication.
(b) In a group $(G, *)$, if $b^{5}=e_{G}$ and $b * a * b^{-1}=a^{2}, \forall a, b \in G$, find the order of ' $a$ '.
14.(a) Let $\phi:(G, \circ) \rightarrow\left(G^{\prime}, *\right)$ be a homomorphism. Prove that $\operatorname{ker} \phi$ is a normal subgroup of $G$.
(b) Prove that order of $U(n)$ is even for $n \geq 3$.
(c) Find all elements of order 5 in $\left(\mathbb{Z}_{40},+\right)$. Find all the cyclic subgroups of $\left(\mathbb{Z}_{9},+\right)$.
15.(a) If $H$ be a subgroup of a cyclic group $G$, then prove that the quotient group $G / H$ is cyclic.
(b) Prove that every permutation on a finite set is either a cycle or a product of disjoint cycles.
16. Let $H$ be a subgroup of $G$. Then show that the following conditions are equivalent:
(a) $H$ is a normal subgroup of $G$. 4
(b) $\mathrm{gHg}^{-1} \subseteq H, \forall g \in G \quad 4$
(c) $g \mathrm{Hg}^{-1}=H, \quad \forall g \in G$.

## MATHGE-V <br> NUMERICAL METHODS

## GROUP-A

Answer any four questions from the following

1. Show that $\Delta \log f(x)=\log \left[1+\frac{\Delta f(x)}{f(x)}\right]$.
2. Find the number of significant figures in:
(i) $\quad V_{\mathrm{A}}=11.2461$ given its absolute error as $0.25 \times 10^{-2}$.
(ii) $V_{\mathrm{T}}=1.5923$ given its relative error as $0.1 \times 10^{-3}$.
3. State the condition for convergence of Gauss-Seidel method for solving a system of equations. Are they necessary and sufficient?
4. Given the set of values of $y=f(x)$ :

| $x$ | 2 | 4 | 6 | 8 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 5 | 10 | 17 | 29 | 50 |

Form the diagonal difference table and find $\Delta^{2} f(6)$.

## UG/CBCS/B.Sc./Hons./2nd Sem./Mathematics/MATHGE2/2022

5. What is the geometric representation of the Newton-Raphson method?
6. Find the function whose first difference is $e^{x}$ taking the step size $h=1$.

## GROUP-B

## Answer any four questions from the following

7. The equation $x^{2}+a x+b=0$ has two real roots $\alpha, \beta$. Show that the iteration method $x_{k+1}=-\frac{a x_{k}+b}{x_{k}}$ is convergent near $x=\alpha$, if $|\alpha|>|\beta|$.
8. What is interpolation? Establish Lagrange's polynomial interpolation formula.
9. Using the method of Newton-Raphson, find the root of $x^{3}-8 x-4=0$ which lies between 3 and 4, correct upto 4 decimal places.
10. Complete the following table:

| $x$ | 10 | 15 | 20 | 25 | 30 | 35 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | 19.97 | 21.51 | - | 23.52 | 24.65 | - |

11. Use Euler's method, solve the following problem for $x=0.1$ by taking $h=0.02$.

$$
\frac{d y}{d x}=\frac{y-x}{y+x} \text { with } y(0)=1
$$

12. Calculate the approximate value of $\int_{0}^{\pi / 2} \sin x d x$, by Trapezoidal rule using 11 ordinates.

## GROUP-C

## Answer any two questions from the following

13.(a) Given the following table:

| $x$ | 0 | 5 | 10 | 15 | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | 1.0 | 1.6 | 3.8 | 8.2 | 15.4 |

Construct the difference table and compute $f(21)$ by Newton's Backward formula.
(b) Solve the system by Gauss-Jacobi iteration method:

$$
\begin{aligned}
& x+y+4 z=9 \\
& 8 x-3 y+2 z=20 \\
& 4 x+11 y-z=33
\end{aligned}
$$

14.(a) Evaluate $\int_{0}^{\pi / 2} \sqrt{1-0.162 \sin ^{2} \phi} d \phi$, by Simpson's $\frac{1}{3}$ rd rule, correct upto four decimal places, taking six sub-interval.
(b) Show that Bisection method converges linearly.
15.(a) Use Picard's method to compute $y(0.1)$ from the differential equation $\frac{d y}{d x}=1+x y$ given $y=1$, where $x=0$.
(b) Define the operator $\Delta$. Prove that $\Delta^{n}\left(\frac{1}{x}\right)=\frac{(-1)^{n} n!}{x(x+1)(x+2) \ldots .(x+m)}$.
16.(a) Establish Newton's forward interpolation formula.
(b) Use Gauss-elimination method to solve the following:

$$
\begin{gathered}
-10 x_{1}+6 x_{2}+3 x_{3}+100=0 \\
6 x_{1}-5 x_{2}+5 x_{3}+100=0 \\
3 x_{1}+6 x_{2}-10 x_{3}+100=0
\end{gathered}
$$

Correct upto three significant figures.

