

'समानो मन्त्रः समितिः समानी' UNIVERSITY OF NORTH BENGAL B.Sc. Honours 2nd Semester Examination, 2022

GE1-P2-STATISTICS

FUNDAMENTAL OF PROBABILITY THEORY

Time Allotted: 2 Hours

Full Marks: 40

 $1 \times 5 = 5$

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

- 1. Answer any *five* questions:
 - (a) If $P(A \cup B) = \frac{5}{6}$, $P(A \cap B) = \frac{1}{3}$ and $P(A^c) = \frac{1}{2}$, then show that A and B are independent.

(b) The mean and variance of a binomial variate X are 4 and $\frac{4}{3}$. Find P(X = 1).

- (c) Show that the chance of throwing an odd number with a die is $\frac{1}{2}$.
- (d) What is the chance that a non-leap year selected at random will contain 53 Sundays?
- (e) For a binomial distribution with mean 5 and S.D. 2, find the mode.
- (f) For what value of k, $f(x, y) = ke^{-(x+y)}$, $x \ge 0$, $y \ge 0$ will represent probability density function?
- (g) State the Central Limit Theorem.
- (h) State two properties of hypergeometric distribution.

GROUP-B

- 2. Answer any *three* questions:
 - (a) State and prove Bayes' Theorem.
 - (b) Prove that the variance of binomial distribution is *npq*.
 - (c) Derive Poisson distribution as the limit of binomial distribution.
 - (d) Two persons toss a true coin *n* times each. Show that the probability of their scoring the same number of heads is $\binom{2n}{n} 2^{-2n}$.

1

 $5 \times 3 = 15$

UG/CBCS/B.Sc./Hons./2nd Sem./Statistics/STAGE2/2022

(e) If X follows binomial distribution with parameter n and p then prove that

 $P[X \text{ is even}] = \frac{1}{2}[1 + (q - p)^n] \text{ where } p + q = 1$

GROUP-C

3.		Ans	wer any <i>two</i> questions:	$10 \times 2 = 20$
	(a)	(i)	Show that the expectation of the product of two independent random variables is equal to the product of their expectations.	5
		(ii)	Show that for the binomial distribution	5
			$\mu_{r+1} = p(1-p) \left(nr\mu_{r-1} + \frac{d\mu_r}{dp} \right)$	
			where the symbols have their usual meanings.	
	(b)	(i)	In a distribution exactly normal, 7% of the items are under 35 and 89% are under 63, what are the mean and s.d. of the distribution?	5
		(ii)	Find the points of inflextion of the normal curve.	5
	(c)	(i)	For a normal distribution show that odd order moments about mean are zero.	5
		(ii)	Find the probability that at most 5 defective fuses will be found in a box of 200 fuses, if experience show that 2% of such fuses are defective.	5
	(d)	(i)	Find the mode of the Poisson distribution.	5
		(ii)	A coin is tossed until a head appears. What is the expectation of the number of tosses?	5

__×___

_