
 'समानो मन्त्रः समितिः समानी'

 UNIVERSITY OF NORTH BENGAL

 UNIVERSITY OF NORTH BENGAL
 B.Sc. Programme 2nd Semester Examination, 2022

DSC1/2/3-P2-STATISTICS

Time Allotted: 2 Hours
Full Marks: 40
The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

1. Answer any five questions:

$$
1 \times 5=5
$$

(a) For binomial distribution with mean 5 and S.D. 2, find the mode.
(b) State two properties of normal distribution.
(c) Show that the chance of throwing an odd number with a die is $\frac{1}{2}$.
(d) What is the chance that a leap year selected at random will contain 53 Sundays?
(e) Distinguish between p.m.f. and p.d.f.
(f) The mean and variance of X are 10 and 4 respectively. Find the mean and variance of $5-2 X$.
(g) A speak truth in 75% and B in 80% of the cases. In what percentage of cases, are they likely to contradict each other stating the same fact?
(h) If $P(A \cup B)=\frac{5}{6}, P(A \cap B)=\frac{1}{3}$ and $P\left(A^{c}\right)=\frac{1}{2}$, then show that A and B are independent.

GROUP-B

2. Answer any three questions:
(a) Find the variance of Poisson distribution.
(b) State and prove Bayes' Theorem.
(c) If X follows binomial distribution with parameter n and p then prove that

$$
P[X \text { is even }]=\frac{1}{2}\left[1+(q-p)^{n}\right] \text { where } p+q=1
$$

(d) Derive Poisson distribution as the limit of binomial distribution.
(e) Let X be a binomially distributed random variable with parameter n and p. For what value of p is $\operatorname{var}(X)$ a maximum, if you assume that n is fixed?

GROUP-C

3. Answer any two questions:

(a) (i) Show that the expectation of the sum of two jointly distributed random variable X and Y is the sum of their expectations.
(ii) Let the variable X have the distribution $P(X=0)=P(X=2)=p$; $P(X=1)=1-2 p$, for $0 \leq p \leq \frac{1}{2}$.

For what value of p is the $\operatorname{var}(X)$ maximum?
(b) (i) Show that odd order central moments of the normal distribution are equal to zero.
(ii) A coin is tossed until a head appears. What is the expectation of the number of tosses?
(c) (i) Find the probability that at most 5 defective fuses will be found in a box of 200 fuses if experience show that 2% of such fuses are defective.
(ii) Find the expected value of the number of points that will be obtained in a single throw with an ordinary die.
(d) (i) Find the points of inflextion of the normal curve.
(ii) Assume the mean heights of soldiers to be 68.22 inches with a variance of 10.8 (in) ${ }^{2}$. How many soldiers in a regiment of 1000 would you expect to be over 6 feet tall?
(Given that the area under the standard normal curve between $x=0$ and $x=0.35$ is 0.1368 and between $x=0$ and $x=1.15$ is 0.3746).

