

DSC1/2/3-P2-STATISTICS

Time Allotted: 2 Hours

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

- 1. Answer any *five* questions:
 - (a) For binomial distribution with mean 5 and S.D. 2, find the mode.
 - (b) State two properties of normal distribution.
 - (c) Show that the chance of throwing an odd number with a die is $\frac{1}{2}$.
 - (d) What is the chance that a leap year selected at random will contain 53 Sundays?
 - (e) Distinguish between p.m.f. and p.d.f.
 - (f) The mean and variance of X are 10 and 4 respectively. Find the mean and variance of 5-2X.
 - (g) A speak truth in 75% and B in 80% of the cases. In what percentage of cases, are they likely to contradict each other stating the same fact?
 - (h) If $P(A \cup B) = \frac{5}{6}$, $P(A \cap B) = \frac{1}{3}$ and $P(A^c) = \frac{1}{2}$, then show that A and B are independent.

GROUP-B

- 2. Answer any *three* questions:
 - (a) Find the variance of Poisson distribution.
 - (b) State and prove Bayes' Theorem.
 - (c) If X follows binomial distribution with parameter n and p then prove that

$$P[X \text{ is even}] = \frac{1}{2}[1 + (q - p)^n] \text{ where } p + q = 1$$

- (d) Derive Poisson distribution as the limit of binomial distribution.
- (e) Let *X* be a binomially distributed random variable with parameter *n* and *p*. For what value of *p* is var(*X*) a maximum, if you assume that *n* is fixed?

1

 $1 \times 5 = 5$

Full Marks: 40

 $5 \times 3 = 15$

GROUP-C

3.		Answer any <i>two</i> questions:		$10 \times 2 = 20$	
	(a)	(i)	Show that the expectation of the sum of two jointly distributed random variable X and Y is the sum of their expectations.	5	
		(ii)	Let the variable X have the distribution $P(X=0) = P(X=2) = p$; $P(X=1) = 1-2p$, for $0 \le p \le \frac{1}{2}$.	5	
			For what value of p is the var(X) maximum?		
	(b)	(i)	Show that odd order central moments of the normal distribution are equal to zero.	5	
		(ii)	A coin is tossed until a head appears. What is the expectation of the number of tosses?	5	
	(c)	(i)	Find the probability that at most 5 defective fuses will be found in a box of 200 fuses if experience show that 2% of such fuses are defective.	5	
		(ii)	Find the expected value of the number of points that will be obtained in a single throw with an ordinary die.	5	
	(d)	(i)	Find the points of inflextion of the normal curve.	5	
		(ii)	Assume the mean heights of soldiers to be 68.22 inches with a variance of $10.8(in)^2$. How many soldiers in a regiment of 1000 would you expect to be over 6 feet tall?	5	
			(Given that the area under the standard normal curve between $x = 0$ and $x = 0.35$ is 0.1368 and between $x = 0$ and $x = 1.15$ is 0.3746).		

_____X_____