

ंसमानो मन्त्रः समितिः समानी' UNIVERSITY OF NORTH BENGAL B.Sc. Honours 4th Semester Examination, 2022

GE2-P2-MATHEMATICS

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks. All symbols are of usual significance.

The question paper contains MATHGE4-I, MATHGE4-II, MATHGE4-III, MATHGE4-IV & MATHGE4-V. The candidates are required to answer any *one* from the *five* courses. Candidates should mention it clearly on the Answer Book.

MATHGE4-I

CAL. GEO. AND DE.

GROUP-A

1.	Answer any <i>four</i> questions from the following:	3×4 = 12
	(a) If $y = \tan^{-1} \frac{x}{a}$, then find y_n .	3
	(b) Evaluate: $\lim_{x \to 0} \frac{\sin x - x + \frac{x^3}{6}}{x^5}$	3
	(c) Find the equation of the circle which contains the point of intersection of the $x + 3y - 6 = 0$ and $x - 2y - 1 = 0$, and centre at origin.	ines 3
	(d) Identify the locus of the equation $x^2 + y^2 + 6x - 4y + 9 = 0$.	3
	(e) Obtain a reduction formula for $\int x^n e^{ax} dx$ and hence evaluate $\int x^3 e^{ax} dx$.	2+1
	(f) Solve: $\frac{dy}{dx} + 2xy = x^2 + y^2$	3
	GROUP-B	
2.	Answer any <i>four</i> questions from the following:	$6 \times 4 = 24$
	(a) If $y = a\cos(\log x) + b\sin(\log x)$, show that $x^2y_{n+2} + (2n+1)xy_{n+1} + (n^2+1)y_n = a^2y_{n+2} + (n^2+1)y_n = a^2y_{n+2} + (n^2+1)y_n = a^2y_{n+2} + (n^2+1)y_{n+2} + (n^2+1)y_{n+2} + (n^2+1)y_n = a^2y_{n+2} + (n^2+1)y_{n+2} + (n^2+1)y_{n+2$	= 0. 6
	(b) Show that the points of inflexion of the curve $y^2 = (x-a)^2(x-b)$ lie on the $3x + a = 4b$.	line 6
	(c) Find the volume of the solid generated by the revolution of the cardi $r = a(1 + \cos \theta)$ about the polar axis.	oide 6
	(d) A plane passes through a fixed point (p, q, r) and cuts the axes A, B, C . The locus of the centre of the sphere <i>OABC</i> .	Find 6
	(e) Solve: $(2xy^4e^y + 2xy^3 + y)dx + (x^2y^4e^y - x^2y^2 - 3x)dy = 0$	6
	(f) Find the equation of the parabola whose focus is at $(3, -4)$ and directrix as line $x + 2y - 2 = 0$.	s the 6

GROUP-C

		Answer any two questions from the following	$12 \times 2 = 24$
3.	(a)	Find an integrating factor of the form $x^p y^q$ and solve the equation	6
		$(4xy^2 + 6y) dx + (5x^2y + 8x) dy = 0$	
	(b)	Solve, by reducing to Clairaut's form by putting $x^2 = u$ and $y^2 = v$, the differential equation $(px - y)(x - py) = 2p$.	6
4.	(a)	Find the asymptotes of the curve $x^3 + x^2y - xy^2 - y^3 + x^2 - y^2 = 2$.	6
	(b)	Find the envelope of circles whose centre lie on the rectangular hyperbola $xy = c^2$ and pass through its centre.	6
5.	(a)	Reduce the equation $\frac{dy}{dx} = 1 - x(y - x) - x^3(y - x)^3$ to a linear form and hence solve it.	6
	(b)	Find the singular solution of the differential equation satisfied by the family of curves $c^2 + 2cy - x^2 + 1 = 0$, where <i>c</i> is a parameter.	6
6.	(a)	Find the length of the arc of the curve $x = c \sin 2\theta (1 + \cos 2\theta)$, $y = c \cos 2\theta (1 - \cos 2\theta)$	6
	(b)	from the origin to any point. Find the area of the curve $a^2y^2 = a^2x^2 - x^4$.	6

MATHGE4-II

ALGEBRA

GROUP-A

1. Answer any <i>four</i> questions from the following:	$3 \times 4 = 12$
(a) Find two integers u and v satisfying $54u + 24v = 30$.	3
(b) Find the value of $\sqrt[3]{i} + \sqrt[3]{-i}$, where $\sqrt[3]{z}$ is the principal cube root of z.	3
(c) Find the rank of the matrix,	3
$ \begin{pmatrix} 2 & 1 & 4 & 3 \\ 3 & 2 & 6 & 9 \end{pmatrix} $	
3 2 6 9	

-	_	•	-
1	1	2	6)

(d) Find the remainder when 3^{36} is divided by 77.

(d) Find the remainder when 3³⁶ is divided by //. (e) Show that the mapping $f: \mathbb{N} \to \mathbb{Z}$ defined by $f(n) = \begin{cases} \frac{n}{2} & \text{, if } n \text{ is even} \\ -\frac{n-1}{2} & \text{, if } n \text{ is odd} \end{cases}$

is invertible.

(f) Without solving, state the nature of roots of the equation $x^7 - 3x^3 - x + 1 = 0$. 3

3

3

GROUP-R

		GROUP-B	
2.		Answer any <i>four</i> questions from the following:	$6 \times 4 = 24$
	(a)	For $a, b, c > 0$, show that $(ab + bc + ca)(ab^{-1} + bc^{-1} + ca^{-1}) \ge (a + b + c)^2$.	6
	(b)	Find all eigen values and corresponding eigen vectors of the matrix.	6
		$\begin{pmatrix} 2 & -1 & 0 \end{pmatrix}$	
		$ \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} $	
	(c)	A relation ρ on the set N is given by " $\rho = \{(a, b) \in \mathbb{N} \times \mathbb{N}: a \mid b\}$ ". Examine if ρ is (i) reflexive, (ii) symmetric, (iii) transitive.	6
	(d)	Solve the equation $x^4 - 4x^3 - 4x^2 - 4x - 5 = 0$, given that two roots α , β are connected by the relation $2\alpha + \beta = 3$.	6
	(e)	(i) Prove that if $a \equiv b \pmod{m}$, then $a^n \equiv b^n \pmod{m}$ for all positive integer <i>n</i> .	2
		(ii) Prove that $3^{2n} - 8n - 1$ is divisible by 64.	4
	(f)	If $\tan^{-1}(x+iy) = \alpha + i\beta$, where x, y, α, β are real and $(x, y) \neq (0, \pm 1)$, then prove that	6
		(i) $x^2 + y^2 + 2x \cot 2\alpha = 1$	
		(ii) $x^2 + y^2 + 1 - 2y \coth 2\beta = 0$.	
		GROUP-C	
		GROUP-C Answer any <i>two</i> questions from the following	$12 \times 2 = 24$
3	. (a)	Answer any <i>two</i> questions from the following Verify Cayley-Hamilton theorem for the matrix	12×2 = 24 7
3	. (a)	Answer any <i>two</i> questions from the following Verify Cayley-Hamilton theorem for the matrix	12×2 = 24 7
3	. (a)	Answer any two questions from the following	12×2 = 24 7
3	. (a)	Answer any <i>two</i> questions from the following Verify Cayley-Hamilton theorem for the matrix	12×2 = 24 7
3		Answer any <i>two</i> questions from the following Verify Cayley-Hamilton theorem for the matrix $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ Hence find A^{-1} and A^9 . If $x + \frac{1}{x} = 2\cos\theta$, then show that for any positive integer n , $x^n + \frac{1}{x^n} = 2\cos n\theta$,	12×2 = 24 7
3		Answer any <i>two</i> questions from the following Verify Cayley-Hamilton theorem for the matrix $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ Hence find A^{-1} and A^9 .	7
	(b)	Answer any <i>two</i> questions from the following Verify Cayley-Hamilton theorem for the matrix $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ Hence find A^{-1} and A^9 . If $x + \frac{1}{x} = 2\cos\theta$, then show that for any positive integer n , $x^n + \frac{1}{x^n} = 2\cos n\theta$,	7
	(b) (a)	Answer any <i>two</i> questions from the following Verify Cayley-Hamilton theorem for the matrix $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ Hence find A^{-1} and A^{9} . If $x + \frac{1}{x} = 2\cos\theta$, then show that for any positive integer n , $x^{n} + \frac{1}{x^{n}} = 2\cos n\theta$, $x^{n} - \frac{1}{x^{n}} = \pm 2i\sin n\theta$ and $\frac{x^{2n} - 1}{x^{2n} + 1} = \pm i\tan n\theta$.	7 5
4.	(b) (a) (b)	Answer any <i>two</i> questions from the following Verify Cayley-Hamilton theorem for the matrix $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ Hence find A^{-1} and A^{9} . If $x + \frac{1}{x} = 2\cos\theta$, then show that for any positive integer n , $x^{n} + \frac{1}{x^{n}} = 2\cos n\theta$, $x^{n} - \frac{1}{x^{n}} = \pm 2i\sin n\theta$ and $\frac{x^{2n} - 1}{x^{2n} + 1} = \pm i\tan n\theta$. Show that the relation $a \equiv b \pmod{5}$ is an equivalence relation. Show that 1! 3! 5! $\cdots (2n-1)! > (n!)^{n}$ for all $n \in \mathbb{N}$.	7 5 6
4.	(b) (a) (b) (a)	Answer any <i>two</i> questions from the following Verify Cayley-Hamilton theorem for the matrix $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ Hence find A^{-1} and A^9 . If $x + \frac{1}{x} = 2\cos\theta$, then show that for any positive integer n , $x^n + \frac{1}{x^n} = 2\cos n\theta$, $x^n - \frac{1}{x^n} = \pm 2i\sin n\theta$ and $\frac{x^{2n} - 1}{x^{2n} + 1} = \pm i\tan n\theta$. Show that the relation $a \equiv b \pmod{5}$ is an equivalence relation. Show that 1! 3! 5! $\cdots (2n-1)! > (n!)^n$ for all $n \in \mathbb{N}$.	7 5 6 6 6
4.	(b) (a) (b) (a) (b)	Answer any <i>two</i> questions from the following Verify Cayley-Hamilton theorem for the matrix $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ Hence find A^{-1} and A^{9} . If $x + \frac{1}{x} = 2\cos\theta$, then show that for any positive integer n , $x^{n} + \frac{1}{x^{n}} = 2\cos n\theta$, $x^{n} - \frac{1}{x^{n}} = \pm 2i\sin n\theta$ and $\frac{x^{2n} - 1}{x^{2n} + 1} = \pm i\tan n\theta$. Show that the relation $a \equiv b \pmod{5}$ is an equivalence relation. Show that 1! 3! 5! $\cdots (2n-1)! > (n!)^{n}$ for all $n \in \mathbb{N}$. Solve the equation $4x^{4} + 20x^{3} + 35x^{2} + 24x + 6 = 0$, whose roots are in A.P. Find the product of all values of $(1 + i)^{4/5}$.	7 5 6 6 3
4.	(b) (a) (b) (a) (b)	Answer any <i>two</i> questions from the following Verify Cayley-Hamilton theorem for the matrix $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ Hence find A^{-1} and A^9 . If $x + \frac{1}{x} = 2\cos\theta$, then show that for any positive integer n , $x^n + \frac{1}{x^n} = 2\cos n\theta$, $x^n - \frac{1}{x^n} = \pm 2i\sin n\theta$ and $\frac{x^{2n} - 1}{x^{2n} + 1} = \pm i\tan n\theta$. Show that the relation $a \equiv b \pmod{5}$ is an equivalence relation. Show that 1! 3! 5! $\cdots (2n-1)! > (n!)^n$ for all $n \in \mathbb{N}$.	7 5 6 6 6

$$2x + 4y + 6z + 4w = 4$$

$$2x + 5y + 7z + 6w = 3$$

$$2x + 3y + 5z + 2w = 5$$

(b) Prove by induction, $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{1}{6}n(n+1)(2n+1)$.

MATHGE4-III

DIFFERENTIAL EQUATION AND VECTOR CALCULUS

GROUP-A

- (a) Solve the equation $(1 x^2) dy = 2y dx$, when x = 2, y = 1.
- (b) Find $\frac{1}{D^2 4} (\cos^2 x)$.
- (c) Show that $\sin x$, $\cos x$, $\sin 2x$ are linearly dependent.

Answer any *four* questions from the following:

- (d) Construct the differential equation from the relation $V = \frac{A}{r} + B$ by eliminating the arbitrary constant A and B.
- (e) Show that the vectors (i-2j+3k), (-2i+3j-4k), (-j+2k) are co-planar.

(f) If
$$\vec{a} = 2t^2\hat{i} + 3(t-1)\hat{j} + 4t^2\hat{k}$$
 and $\vec{b} = (t-1)\hat{i} + t^2\hat{j} + (t-2)\hat{k}$, find $\int_0^2 (\vec{a} \cdot \vec{b}) dt$

GROUP-B

2. This wer any jour questions nom the following.	0.1 21
(a) If y_1, y_2, \dots, y_n be <i>n</i> solutions of the differential equation	6
$a_n \frac{d^n y}{dx^n} + a_{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1 \frac{dy}{dx} + a_0 y = 0$	
(where $a_0, a_1,, a_n$ are all constants) then show that $y = \lambda_1 y_1 + \lambda_2 y_2 + + \lambda_n y_n$	l
will be another solution of the equation for any scalars $\lambda_1, \lambda_2, \dots, \lambda_n$.	
(b) Solve: $y'' - 4y' - 5y = xe^{-x}$, $y(0) = 0$, $y'(0) = 0$	6
(c) (i) Solve: $\frac{dx}{dt} + 2x - 3y = t$	3+3
$\frac{dy}{dt} - 3x + 2y = e^{2t}$	
(ii) Apply method of undetermined coefficient to solve $\frac{d^2y}{dx^2} - 2\left(\frac{dy}{dx}\right) - 3y = 2e^x$.	
(d) Solve: $(D^4 - 8D)y = x^2 + e^{2x}$, $D \equiv \frac{d}{dx}$	6
(e) (i) If $\vec{r} = (2x^2y - x^4)\hat{i} + (e^{xy} - y\sin x)\hat{j} + (x^2\cos y)\hat{k}$, show that $\frac{\partial^2 \vec{r}}{\partial x \partial y} = \frac{\partial^2 \vec{r}}{\partial y \partial x}$.	3+3
(ii) Calculate $\oint_C \vec{F} \cdot d\vec{r}$, where $\vec{F} = y\hat{i} + z\hat{j} + x\hat{k}$ and C is the circle $x^2 + y^2 = 1$.	,
z = 0.	
(f) Prove that the necessary and sufficient condition for a vector valued function \vec{r}	n 6
$\vec{a}(t)$ to be of constant magnitude is $\vec{a} \cdot \frac{d\vec{a}}{dt} = 0$.	

2.

 $3 \times 4 = 12$

 $6 \times 4 = 24$

6

GROUP-C

Answer any two questions from the following $12 \times 2 = 24$

3. (a) Solve:
$$(D^2 - 3D + 2)y = \sin 3x$$
 4

(b) Solve:
$$x^2y_2 + xy_1 - 4y = 0$$
 4

(c) Find
$$\lim_{t \to 0} f(t)$$
 given that $f(t) = \frac{\sin t + t}{3t} \hat{i} + e^{2t} \hat{j} + \sin(t-n)\hat{k}$.

4. (a) Solve the given differential equation
$$(x^3D^3 + 2x^2D^2 + 2)y = 10\left(x + \frac{1}{x}\right)$$
.
(b) Solve: $(D^2 + 6D + 8)y = (e^{2x} + 1)^2$

(b) Solve:
$$(D^2 + 6D + 8)y = (e^{2x} + 1)^2$$

5. (a) If
$$\vec{x} = (a\cos t)\hat{i} + (a\sin t)\hat{j} + (at\tan\alpha)\hat{k}$$
, then show that
$$\begin{bmatrix} \frac{d\vec{x}}{dt} & \frac{d^2\vec{x}}{dt^2} & \frac{d^3\vec{x}}{dt^3} \end{bmatrix} = a^3\tan\alpha$$

(b) Evaluate $\oint_{T} \vec{F} \cdot d\vec{r}$, where $\vec{F} = (2x + y^2)\hat{i} + (3y - 4x)\hat{j}$ and T is the triangle where 6 vertices are (0, 0), (2, 0), (2, 1) taking this order.

6. (a) If $\vec{V} = xy\hat{i} - z^2\hat{j} + xyz\hat{k}$ and C be a curve given by $\vec{r} = t\hat{i} + t^2\hat{j} + t^3\hat{k}$, from (0, 0, 0) 6 to (1, 1, 1), then calculate

$$\int_C \vec{V} \cdot d\vec{r}$$

(b) If the position vector of a moving particle at any time t is given by 3 $\vec{r} = \sin t \hat{i} + \cos t \hat{j} + 2t \hat{k}$, then show that the velocity of the particle has a constant magnitude.

(c) If
$$\vec{a} = 2t^2\hat{i} + 3(t-1)\hat{j} + 4t^2\hat{k}$$
 and $\vec{b} = (t-1)\hat{i} + t^2\hat{j} + (t-2)\hat{k}$, find $\int_{0}^{2} (\vec{a} \cdot \vec{b}) dt$. 3

MATHGE4-IV

GROUP THEORY

GROUP-A

1.	Answer any <i>four</i> questions from the following:	3×4 = 12
	(a) Let (G, \circ) be a group and $a, b \in G$. If $a^2 = e$ and $a \circ b^2 \circ a = b^3$, then prove that	3
	$b^5 = e$.	
	(b) Is the union of two subgroups of a group G also a subgroup of G ? Explain it.	3
	(c) If b be an element of a group and $O(b) = 20$, find the order of the element b^{15} .	3
	(d) Show that any group of order three is cyclic.	3
	(e) Prove that the group $SL(2, \mathbb{R})$ is a normal subgroup of the group $GL(2, \mathbb{R})$.	3
	(f) Write down the elements in the group S_3 .	3

GROUP-B

2.	Answer any <i>four</i> questions from the following:	$6 \times 4 = 24$
(a)	In a group G, for all $a, b \in G$, $(ab)^n = a^n b^n$ holds for three consecutive integers n. Prove that the group is abelian.	6
(b)	Prove that a non-abelian group of order 8 must have an element of order 4.	6
(c)	(i) Show that intersection of two subgroups of a group is also a subgroup of the group.	3
	(ii) If G is a commutative group then prove that $H = \{a^2 : a \in G\}$ is a subgroup of G.	3
(d)	Show that $(\mathbb{Z}, *)$ is a group where $*$ is defined by $a * b = a + b - 1 \forall a, b \in \mathbb{Z}$. Is it a commutative group?	4+2
(e)	Prove that every subgroup of a cyclic group is cyclic.	6
(f)	Prove that a group (G, \cdot) is abelain if and only if $(a \cdot b)^{-1} = a^{-1} \cdot b^{-1} \forall a, b \in G$.	6
	GROUP-C	
	Answer any two questions from the following	$12 \times 2 = 24$
3. (a)	Let <i>H</i> be a subgroup of a group <i>G</i> . The relation ρ defined on <i>G</i> by " <i>a</i> ρb iff $a^{-1}b \in H$ " for $a, b \in G$ is an equivalence relation on <i>G</i> .	6
(b)	Prove that every cyclic group is abelian. Is the converse true? — Justify.	4+2
4. (a)	If <i>H</i> be a subgroup of a commutative group <i>G</i> , then prove that the quotient group G/H is commutative. Is the converse true? — Justify.	3+3
(b)	If <i>H</i> and <i>K</i> are subgroups of a group (G, \cdot) , then show that <i>HK</i> is a subgroup of (G, \cdot) if and only if <i>HK</i> = <i>KH</i> .	6
5. (a)	Show that in a group $(G, *)$	3+3
	(i) the inverse of each element is unique.	
	(ii) the equation $a * x = b$ has a unique solution $\forall a, b \in G$.	
(b)	Let $M = \left\{ \begin{pmatrix} x & y \\ x & y \end{pmatrix} : x, y \in \mathbb{R} \text{ and } x + y \neq 0 \right\}$. Check whether <i>M</i> forms a group	6
	with respect to multiplication.	
6. (a)	Find all homomorphism from $(\mathbb{Z}_8, +_8)$ to $(\mathbb{Z}_6, +_6)$.	6
	Let $G = S_3$, $G' = (\{1, -1\}, \cdot)$ and $\phi: G \to G'$ is defined by	2+4
	$\phi(\alpha) = 1$ if α be an even permutation in S_3	
	$= 1 \text{ if } \alpha \text{ be an odd normulation in S}$	

= -1 if α be an odd permutation in S_3

Determine ker ϕ . Deduce that A_3 is a normal subgroup of S_3 .

MATHGE4-V

NUMERICAL METHODS

GROUP-A

1.	Answer any <i>four</i> questions from the following:	3×4 = 12
(a)	Find the relative error in the computation of $x - y$ for $x = 12.05$ and $y = 8.02$ having absolute error $\Delta x = 0.005$ and $\Delta y = 0.001$.	3
(b)	Write down the order of convergence of the following methods:	1+2=3
	(i) Newton-Raphson method	
	(ii) Gauss-Jacobi iteration method.	
(c)	State three differences between direct and iterative method.	3
(d)	Explain the Geometrical interpretation of trapezoidal rule.	3
(e)	Define 'degree of precession' of a quadrature formula and find the degree of precession of Trapezoidal rule.	2+1 = 3
(f)	Write down the number of significant figures in the following:	1 + 1 + 1 = 3
	5.398, 0.000538, 9.123	

GROUP-B

2.		Answer any <i>four</i> questions from the following:	$6 \times 4 = 24$
	(a)	Use the method of bisection to compute a real root of $x^3 - 4x - 9 = 0$ between 2 and 3 and correct upto four significant figures.	6
	(b)	Use Gauss-Jacobi method to solve:	6
		5x - y + z = 10	
		2x + 4y = 12	
		x + y + 5z = -1	
	(c)	Explain the principle of propagation of errors and explain how it affects numerical computation.	6
	(d)	Find $y(4.4)$ by Euler's modified method, taking $h = 0.2$ from the differential equation.	6
		$\frac{dy}{dx} = \frac{2 - y^2}{5x} , y = 1 \text{when} x = 4$	

- (e) Find the value of $\int_{0}^{1} \frac{dx}{1+x^2}$, taking 5-sub-intervals, by Trapezoidal rule, correct to 6 5 significant figures.
- (f) Evaluate the missing terms in the following table:

x	0	1	2	3	4	5
f(x)	0	I	8	15	I	35

6

GROUP-C Answer any two questions from the following $12 \times 2 = 24$ 3. (a) Use Runge-Kutta method of order two to find y(0.1) and y(0.2) correct upto 6 four decimal places, when given $\frac{dy}{dx} = y - x$, y(0) = 2. (b) What is interpolation? Establish the Lagrange's interpolation polynomial formula. 6 4. (a) Use Picard's method to compute y(0.1) from the differential equation: 6 $\frac{dy}{dx} = x + y$; y = 1 when x = 0(b) Explain Euler's method for solving first order differential equation of the form: 6 $\frac{dy}{dx} = f(x, y)$ 5. (a) Use Gauss-Seidal method to solve the following system of equations: 6 $8x_1 + 2x_2 - 2x_3 = 8$ $x_1 - 8x_2 + 3x_3 = 4$ $2x_1 + x_2 + 9x_3 = 12$ (b) Find the condition of convergence of fixed point iteration method. 6 6. (a) Find a positive root of $x^2 + 2x - 2 = 0$ by Newton-Raphson method, correct upto 6 two significant figures. (b) A function f(x) defined on [0, 1] is such that f(0) = 0, $f\left(\frac{1}{2}\right) = \frac{1}{2}$, f(1) = 2. 6 Find the interpolating polynomial which approximate equal to f(x).

-×-