UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 4th Semester Examination, 2022

GE2-P2-MATHEMATICS

Time Allotted: 2 Hours
Full Marks: 60
The figures in the margin indicate full marks. All symbols are of usual significance.

The question paper contains MATHGE4-I, MATHGE4-II, MATHGE4-III, MATHGE4-IV \& MATHGE4-V. The candidates are required to answer any one from the five courses. Candidates should mention it clearly on the Answer Book.

MATHGE4-I

Cal. Geo. and DE.

GROUP-A

1. Answer any four questions from the following:
$3 \times 4=12$
(a) If $y=\tan ^{-1} \frac{x}{a}$, then find y_{n}.
(b) Evaluate: $\lim _{x \rightarrow 0} \frac{\sin x-x+\frac{x^{3}}{6}}{x^{5}}$
(c) Find the equation of the circle which contains the point of intersection of the lines
$x+3 y-6=0$ and $x-2 y-1=0$, and centre at origin.
(d) Identify the locus of the equation $x^{2}+y^{2}+6 x-4 y+9=0$.3
(e) Obtain a reduction formula for $\int x^{n} e^{a x} d x$ and hence evaluate $\int x^{3} e^{a x} d x$. $2+1$
(f) Solve: $\frac{d y}{d x}+2 x y=x^{2}+y^{2}$

GROUP-B

2. Answer any four questions from the following:
$6 \times 4=24$
(a) If $y=a \cos (\log x)+b \sin (\log x)$, show that $x^{2} y_{n+2}+(2 n+1) x y_{n+1}+\left(n^{2}+1\right) y_{n}=0$.
(b) Show that the points of inflexion of the curve $y^{2}=(x-a)^{2}(x-b)$ lie on the line $3 x+a=4 b$.
(c) Find the volume of the solid generated by the revolution of the cardioide $r=a(1+\cos \theta)$ about the polar axis.
(d) A plane passes through a fixed point (p, q, r) and cuts the axes A, B, C. Find the locus of the centre of the sphere $O A B C$.
(e) Solve: $\left(2 x y^{4} e^{y}+2 x y^{3}+y\right) d x+\left(x^{2} y^{4} e^{y}-x^{2} y^{2}-3 x\right) d y=0$
(f) Find the equation of the parabola whose focus is at $(3,-4)$ and directrix as the line $x+2 y-2=0$.

GROUP-C

Answer any two questions from the following

3. (a) Find an integrating factor of the form $x^{p} y^{q}$ and solve the equation

$$
\left(4 x y^{2}+6 y\right) d x+\left(5 x^{2} y+8 x\right) d y=0
$$

(b) Solve, by reducing to Clairaut's form by putting $x^{2}=u$ and $y^{2}=v$, the differential equation $(p x-y)(x-p y)=2 p$.
4. (a) Find the asymptotes of the curve $x^{3}+x^{2} y-x y^{2}-y^{3}+x^{2}-y^{2}=2$.
(b) Find the envelope of circles whose centre lie on the rectangular hyperbola $x y=c^{2}$ and pass through its centre.
5. (a) Reduce the equation $\frac{d y}{d x}=1-x(y-x)-x^{3}(y-x)^{3}$ to a linear form and hence solve it.
(b) Find the singular solution of the differential equation satisfied by the family of curves $c^{2}+2 c y-x^{2}+1=0$, where c is a parameter.
6. (a) Find the length of the arc of the curve

$$
x=c \sin 2 \theta(1+\cos 2 \theta) \quad, \quad y=c \cos 2 \theta(1-\cos 2 \theta)
$$

from the origin to any point.
(b) Find the area of the curve $a^{2} y^{2}=a^{2} x^{2}-x^{4}$.

MATHGE4-II

Algebra

GROUP-A

1. Answer any four questions from the following:
(a) Find two integers u and v satisfying $54 u+24 v=30$.
(b) Find the value of $\sqrt[3]{i}+\sqrt[3]{-i}$, where $\sqrt[3]{z}$ is the principal cube root of z.
(c) Find the rank of the matrix,

$$
\left(\begin{array}{llll}
2 & 1 & 4 & 3 \\
3 & 2 & 6 & 9 \\
1 & 1 & 2 & 6
\end{array}\right)
$$

(d) Find the remainder when 3^{36} is divided by 77 .
(e) Show that the mapping $f: \mathbb{N} \rightarrow \mathbb{Z}$ defined by $f(n)=\left\{\begin{array}{cl}\frac{n}{2} & \text { if } n \text { is even } \\ -\frac{n-1}{2} & , \text { if } n \text { is odd }\end{array}\right.$ is invertible.
(f) Without solving, state the nature of roots of the equation $x^{7}-3 x^{3}-x+1=0$.

GROUP-B

2. Answer any four questions from the following:
(a) For $a, b, c>0$, show that $(a b+b c+c a)\left(a b^{-1}+b c^{-1}+c a^{-1}\right) \geq(a+b+c)^{2}$.
(b) Find all eigen values and corresponding eigen vectors of the matrix.

$$
\left(\begin{array}{ccc}
2 & -1 & 0 \tag{6}\\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

(c) A relation ρ on the set \mathbb{N} is given by " $\rho=\{(a, b) \in \mathbb{N} \times \mathbb{N}$: $a \mid b\}$ ". Examine if ρ is (i) reflexive, (ii) symmetric, (iii) transitive.
(d) Solve the equation $x^{4}-4 x^{3}-4 x^{2}-4 x-5=0$, given that two roots α, β are connected by the relation $2 \alpha+\beta=3$.
(e) (i) Prove that if $a \equiv b(\bmod m)$, then $a^{n} \equiv b^{n}(\bmod m)$ for all positive integer n.
(ii) Prove that $3^{2 n}-8 n-1$ is divisible by 64 .

If $\tan ^{-1}(x+i y)=\alpha+i \beta$, where x, y, α, β are real and $(x, y) \neq(0, \pm 1)$, then prove that
(i) $x^{2}+y^{2}+2 x \cot 2 \alpha=1$
(ii) $x^{2}+y^{2}+1-2 y \operatorname{coth} 2 \beta=0$.

GROUP-C

Answer any two questions from the following

3. (a) Verify Cayley-Hamilton theorem for the matrix

$$
A=\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & -1 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

Hence find A^{-1} and A^{9}.
(b) If $x+\frac{1}{x}=2 \cos \theta$, then show that for any positive integer $n, x^{n}+\frac{1}{x^{n}}=2 \cos n \theta$, $x^{n}-\frac{1}{x^{n}}= \pm 2 i \sin n \theta$ and $\frac{x^{2 n}-1}{x^{2 n}+1}= \pm i \tan n \theta$.
4. (a) Show that the relation $a \equiv b(\bmod 5)$ is an equivalence relation.
(b) Show that $1!3!5!\cdots(2 n-1)!>(n!)^{n}$ for all $n \in \mathbb{N}$.
5. (a) Solve the equation $4 x^{4}+20 x^{3}+35 x^{2}+24 x+6=0$, whose roots are in A.P. 6
(b) Find the product of all values of $(1+i)^{4 / 5}$.
(c) Show that the eigen values of a real symmetric matrix are all real.
6. (a) Solve the system of linear equations given by:

$$
\begin{aligned}
& 2 x+4 y+6 z+4 w=4 \\
& 2 x+5 y+7 z+6 w=3 \\
& 2 x+3 y+5 z+2 w=5
\end{aligned}
$$

UG/CBCS/B.Sc./Hons./4th Sem./Mathematics/MATHGE4/2022

(b) Prove by induction, $1^{2}+2^{2}+3^{2}+\cdots \cdots+n^{2}=\frac{1}{6} n(n+1)(2 n+1)$.

MATHGE4-III

Differential Equation and Vector Calculus

GROUP-A

1. Answer any four questions from the following:
(a) Solve the equation $\left(1-x^{2}\right) d y=2 y d x$, when $x=2, y=1$.
(b) Find $\frac{1}{D^{2}-4}\left(\cos ^{2} x\right)$.
(c) Show that $\sin x, \cos x, \sin 2 x$ are linearly dependent.
(d) Construct the differential equation from the relation $V=\frac{A}{r}+B$ by eliminating the arbitrary constant A and B.
(e) Show that the vectors $(i-2 j+3 k),(-2 i+3 j-4 k),(-j+2 k)$ are co-planar.
(f) If $\vec{a}=2 t^{2} \hat{i}+3(t-1) \hat{j}+4 t^{2} \hat{k}$ and $\vec{b}=(t-1) \hat{i}+t^{2} \hat{j}+(t-2) \hat{k}$, find $\int_{0}^{2}(\vec{a} \cdot \vec{b}) d t$.

GROUP-B

2. Answer any four questions from the following:
(a) If $y_{1}, y_{2}, \cdots \cdots, y_{n}$ be n solutions of the differential equation

$$
\begin{equation*}
a_{n} \frac{d^{n} y}{d x^{n}}+a_{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\cdots \cdots+a_{1} \frac{d y}{d x}+a_{0} y=0 \tag{6}
\end{equation*}
$$

(where $a_{0}, a_{1}, \ldots ., a_{n}$ are all constants) then show that $y=\lambda_{1} y_{1}+\lambda_{2} y_{2}+\ldots .+\lambda_{n} y_{n}$ will be another solution of the equation for any scalars $\lambda_{1}, \lambda_{2}, \ldots \ldots ., \lambda_{n}$.
(b) Solve: $y^{\prime \prime}-4 y^{\prime}-5 y=x e^{-x}, y(0)=0, y^{\prime}(0)=0$
(c) (i) Solve: $\frac{d x}{d t}+2 x-3 y=t$

$$
\frac{d y}{d t}-3 x+2 y=e^{2 t}
$$

(ii) Apply method of undetermined coefficient to solve $\frac{d^{2} y}{d x^{2}}-2\left(\frac{d y}{d x}\right)-3 y=2 e^{x}$.
(d) Solve: $\left(D^{4}-8 D\right) y=x^{2}+e^{2 x} \quad, \quad D \equiv \frac{d}{d x}$
(e) (i) If $\vec{r}=\left(2 x^{2} y-x^{4}\right) \hat{i}+\left(e^{x y}-y \sin x\right) \hat{j}+\left(x^{2} \cos y\right) \hat{k}$, show that $\frac{\partial^{2} \vec{r}}{\partial x \partial y}=\frac{\partial^{2} \vec{r}}{\partial y \partial x}$.
(ii) Calculate $\oint_{C} \vec{F} \cdot d \vec{r}$, where $\vec{F}=y \hat{i}+z \hat{j}+x \hat{k}$ and C is the circle $x^{2}+y^{2}=1$, $z=0$.
(f) Prove that the necessary and sufficient condition for a vector valued function $\vec{a}(t)$ to be of constant magnitude is $\vec{a} \cdot \frac{d \vec{a}}{d t}=0$.

GROUP-C

Answer any two questions from the following

3. (a) Solve: $\left(D^{2}-3 D+2\right) y=\sin 3 x$
(b) Solve: $x^{2} y_{2}+x y_{1}-4 y=0$
(c) Find $\lim _{t \rightarrow 0} f(t)$ given that $f(t)=\frac{\sin t+t}{3 t} \hat{i}+e^{2 t} \hat{j}+\sin (t-n) \hat{k}$.
4. (a) Solve the given differential equation $\left(x^{3} D^{3}+2 x^{2} D^{2}+2\right) y=10\left(x+\frac{1}{x}\right)$.
(b) Solve: $\left(D^{2}+6 D+8\right) y=\left(e^{2 x}+1\right)^{2}$
5. (a) If $\vec{x}=(a \cos t) \hat{i}+(a \sin t) \hat{j}+(a t \tan \alpha) \hat{k}$, then show that

$$
\left[\frac{d \vec{x}}{d t} \frac{d^{2} \vec{x}}{d t^{2}} \frac{d^{3} \vec{x}}{d t^{3}}\right]=a^{3} \tan \alpha
$$

(b) Evaluate $\oint_{T} \vec{F} \cdot d \vec{r}$, where $\vec{F}=\left(2 x+y^{2}\right) \hat{i}+(3 y-4 x) \hat{j}$ and T is the triangle where vertices are $(0,0),(2,0),(2,1)$ taking this order.
6. (a) If $\vec{V}=x y \hat{i}-z^{2} \hat{j}+x y z \hat{k}$ and C be a curve given by $\vec{r}=t \hat{i}+t^{2} \hat{j}+t^{3} \hat{k}$, from $(0,0,0)$ to $(1,1,1)$, then calculate

$$
\int_{C} \vec{V} \cdot d \vec{r}
$$

(b) If the position vector of a moving particle at any time t is given by
$\vec{r}=\sin t \hat{i}+\cos t \hat{j}+2 t \hat{k}$, then show that the velocity of the particle has a constant magnitude.
(c) If $\vec{a}=2 t^{2} \hat{i}+3(t-1) \hat{j}+4 t^{2} \hat{k}$ and $\vec{b}=(t-1) \hat{i}+t^{2} \hat{j}+(t-2) \hat{k}$, find $\int_{0}^{2}(\vec{a} \cdot \vec{b}) d t$.

MATHGE4-IV

Group Theory

GROUP-A

1. Answer any four questions from the following:
(a) Let (G, \circ) be a group and $a, b \in G$. If $a^{2}=e$ and $a \circ b^{2} \circ a=b^{3}$, then prove that $b^{5}=e$.
(b) Is the union of two subgroups of a group G also a subgroup of G ? Explain it.
(c) If b be an element of a group and $O(b)=20$, find the order of the element b^{15}. 3
(d) Show that any group of order three is cyclic. 3
(e) Prove that the group $S L(2, \mathbb{R})$ is a normal subgroup of the group $G L(2, \mathbb{R})$. 3
(f) Write down the elements in the group S_{3}.

GROUP-B

2. Answer any four questions from the following: $\quad 6 \times 4=24$
(a) In a group G, for all $a, b \in G,(a b)^{n}=a^{n} b^{n}$ holds for three consecutive integers n. Prove that the group is abelian.
(b) Prove that a non-abelian group of order 8 must have an element of order 4 .
(c) (i) Show that intersection of two subgroups of a group is also a subgroup of the group.
(ii) If G is a commutative group then prove that $H=\left\{a^{2}: a \in G\right\}$ is a subgroup of G.
(d) Show that $(\mathbb{Z}, *)$ is a group where $*$ is defined by $a * b=a+b-1 \quad \forall a, b \in \mathbb{Z}$. Is it a commutative group?
(e) Prove that every subgroup of a cyclic group is cyclic.
(f) Prove that a group (G, \cdot) is abelain if and only if $(a \cdot b)^{-1}=a^{-1} \cdot b^{-1} \quad \forall a, b \in G$.

GROUP-C

Answer any two questions from the following $\quad 12 \times 2=24$
3. (a) Let H be a subgroup of a group G. The relation ρ defined on G by " $a \rho b$ iff $a^{-1} b \in H$ " for $a, b \in G$ is an equivalence relation on G.
(b) Prove that every cyclic group is abelian. Is the converse true? - Justify.
4. (a) If H be a subgroup of a commutative group G, then prove that the quotient group G / H is commutative. Is the converse true? - Justify.
(b) If H and K are subgroups of a group (G, \cdot), then show that $H K$ is a subgroup of (G, \cdot) if and only if $H K=K H$.
5. (a) Show that in a group $(G, *)$
(i) the inverse of each element is unique.
(ii) the equation $a * x=b$ has a unique solution $\forall a, b \in G$.
(b) Let $M=\left\{\left(\begin{array}{ll}x & y \\ x & y\end{array}\right): x, y \in \mathbb{R}\right.$ and $\left.x+y \neq 0\right\}$. Check whether M forms a group with respect to multiplication.
6. (a) Find all homomorphism from $\left(\mathbb{Z}_{8},+_{8}\right)$ to $\left(\mathbb{Z}_{6},+_{6}\right)$.
(b) Let $G=S_{3}, G^{\prime}=(\{1,-1\}, \cdot)$ and $\phi: G \rightarrow G^{\prime}$ is defined by

$$
\begin{align*}
\phi(\alpha) & =1 \text { if } \alpha \text { be an even permutation in } S_{3} \\
& =-1 \text { if } \alpha \text { be an odd permutation in } S_{3}
\end{align*}
$$

Determine $\operatorname{ker} \phi$. Deduce that A_{3} is a normal subgroup of S_{3}.

MATHGE4-V

Numerical Methods

GROUP-A

1. Answer any four questions from the following:
(a) Find the relative error in the computation of $x-y$ for $x=12.05$ and $y=8.02$ having absolute error $\Delta x=0.005$ and $\Delta y=0.001$.
(b) Write down the order of convergence of the following methods:
(i) Newton-Raphson method
(ii) Gauss-Jacobi iteration method.
(c) State three differences between direct and iterative method.
(d) Explain the Geometrical interpretation of trapezoidal rule.
(e) Define 'degree of precession' of a quadrature formula and find the degree of $2+1=3$ precession of Trapezoidal rule.
(f) Write down the number of significant figures in the following:

$$
5.398, \quad 0.000538, \quad 9.123
$$

GROUP-B

2. Answer any four questions from the following:
(a) Use the method of bisection to compute a real root of $x^{3}-4 x-9=0$ between 2 and 3 and correct upto four significant figures.
(b) Use Gauss-Jacobi method to solve:

$$
\begin{aligned}
& 5 x-y+z=10 \\
& 2 x+4 y=12 \\
& x+y+5 z=-1
\end{aligned}
$$

(c) Explain the principle of propagation of errors and explain how it affects numerical computation.
(d) Find $y(4.4)$ by Euler's modified method, taking $h=0.2$ from the differential equation.

$$
\frac{d y}{d x}=\frac{2-y^{2}}{5 x}, y=1 \text { when } x=4
$$

(e) Find the value of $\int_{0}^{1} \frac{d x}{1+x^{2}}$, taking 5-sub-intervals, by Trapezoidal rule, correct to 5 significant figures.
(f) Evaluate the missing terms in the following table:

x	0	1	2	3	4	5
$f(x)$	0	-	8	15	-	35

GROUP-C

Answer any two questions from the following

3. (a) Use Runge-Kutta method of order two to find $y(0 \cdot 1)$ and $y(0 \cdot 2)$ correct upto four decimal places, when given $\frac{d y}{d x}=y-x, y(0)=2$.
(b) What is interpolation? Establish the Lagrange's interpolation polynomial formula.
4. (a) Use Picard's method to compute $y(0 \cdot 1)$ from the differential equation:

$$
\frac{d y}{d x}=x+y \quad ; \quad y=1 \quad \text { when } x=0
$$

(b) Explain Euler's method for solving first order differential equation of the form:

$$
\frac{d y}{d x}=f(x, y)
$$

5. (a) Use Gauss-Seidal method to solve the following system of equations:

$$
\begin{aligned}
& 8 x_{1}+2 x_{2}-2 x_{3}=8 \\
& x_{1}-8 x_{2}+3 x_{3}=4 \\
& 2 x_{1}+x_{2}+9 x_{3}=12
\end{aligned}
$$

(b) Find the condition of convergence of fixed point iteration method.
6. (a) Find a positive root of $x^{2}+2 x-2=0$ by Newton-Raphson method, correct upto two significant figures.
(b) A function $f(x)$ defined on $[0,1]$ is such that $f(0)=0, f\left(\frac{1}{2}\right)=\frac{1}{2}, f(1)=2$.

Find the interpolating polynomial which approximate equal to $f(x)$.

