

'समानो मन्त्रः समितिः समानी' UNIVERSITY OF NORTH BENGAL B.Sc. Honours 4th Semester Examination, 2022

CC8-PHYSICS

MATHEMATICAL METHODS-III

Time Allotted: 2 Hours

Full Marks: 40

 $1 \times 5 = 5$

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

1	Amarrian	any Gua	avartiana	from	the	f_{2}	
1.	Answer	any <i>five</i>	questions	Irom	the	10110	wing

(a) Which of the following is analytic function of the complex variable z = x + iy:

(i) |z| (ii) $\operatorname{Re}(z)$ (iii) $\sin z$ (iv) $\log z$

(b) What kind of singularity exists for the function $f(z) = \frac{\sin z}{z}$ at z = 0?

- (c) Solve: $x^5 = 1$
- (d) If A is an orthogonal matrix then show that , $|A| = \pm 1$.
- (e) Is it possible to have Fourier transformation of a function f(x) having infinite periodicity? Justify your answer.
- (f) Write down the polar form of Cauchy-Riemann conditions.
- (g) Find the transpose of the following matrix:

$$\begin{bmatrix} 1 & i & 3 \\ -i & 2i - 4 & 0 \\ 0 & -i & 1 \end{bmatrix}$$

(h) Find the residue of $e^{-\frac{1}{z}}$ at the singularity.

GROUP-B

Answer any *three* questions from the following $5 \times 3 = 15$

2. (a) Find the Fourier transform of the function

$$f(x) = \begin{cases} 1 & \text{if } |x| \le a \\ 0 & \text{if } |x| > a \end{cases}$$

3

UG/CBCS/B.Sc./Hons./4th Sem./Physics/PHYSCC8/2022

(b) Hence show that,
$$\int_{0}^{\infty} \left(\frac{\sin u}{u}\right)^{2} du = \frac{\pi}{2}.$$
 2

3. Given
$$A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$$
 then find the matrix,
 $A^{100} + A^{99} + A^{98} + \dots + A^2 + A$
5

4. (a) Evaluate the following integral using Cauchy's integral formula:

$$\oint_C \frac{e^{2z}}{\left(z+1\right)^4} \, dz$$

where *C* is the circle |z| = 3.

(b) Find the Laurent series of
$$f(z) = \frac{z - \sin z}{z^3}$$
 about the singularity $z = 0$. 2

3

5

5. For the given matrix

$$M = \begin{bmatrix} 3 & -1 & 1 \\ 7 & -5 & 1 \\ 6 & -6 & 2 \end{bmatrix}$$

Find the eigen vector associated with each eigen values.

6. (a) Find the principal value of i^i .	2
(b) Show that, the function $x^2 + iy^3$ is not analytic anywhere.	3

GROUP-C

Answer any two questions from the following	$10 \times 2 = 20$
---	--------------------

			1	0	1]
7.	Given the matrix	<i>B</i> =	0	2	0	,
			0	1	3	

(a) Diagonalize the matrix <i>B</i> .	4
(b) Using Cayley-Hamilton's theorem, find the characteristic equation satisfied by the matrix <i>B</i> .	4
(c) Are the eigenvectors of the matrix <i>B</i> linearly independent?	1
(d) Are the eigenvectors orthogonal to each other?	1

8. (a) Define essential singularity, removable singularity and simple pole of order n 3 with proper examples.
(b) Evaluate the following integral 6 I = ∫₀[∞] dx/(x⁶+1) using the residue theorem.
(c) What kind of singularity exist for the function f(z) = 1/√z?
9. (a) Find the Fourier transformation of the function f(x) = e^{-|x|} and its inverse further formation.

(b) From the previous function, prove that
$$\int_{0}^{\infty} \frac{\cos \alpha x}{\alpha^{2} + 1} d\alpha = \frac{\pi}{2} e^{-|x|}.$$
 4

2

- 10.(a) Let f(z) = u + iv be an analytic complex function, then show that u and v are harmonic function.
 - (b) Find the poles and the residues at the poles of the function $f(z) = \left(\frac{z+1}{z-1}\right)^2$.

(c) Evaluate the integral,
$$\int_{0}^{2\pi} \frac{d\theta}{5+4\sin\theta}$$
.

×