类
 'समानो मन्त्रः समितिः समानी'

UNIVERSITY OF NORTH BENGAL
B.Sc. Honours 4th Semester Examination, 2022

GE2-P2-Statistics

Fundamental of Probability Theory

GROUP-A

1. Answer any five questions:
(a) Show that the chance of throwing an odd number with a die is $\frac{1}{2}$.
(b) What is the chance that a leap year selected at random will contain 53 Sundays?
(c) The probability density function of a random variable X is

$$
\begin{array}{rlrl}
f(x) & =\frac{1}{\theta} e^{-\frac{x}{\theta}} & , & x>0, \theta>0 \\
& =0 & , \quad \text { otherwise }
\end{array}
$$

Find $E\left(X^{2}\right)$.
(d) A speaks truth in 75% and B in 80% of the cases. In what percentage of cases, are they likely to contradict each other in stating the same fact?
(e) Give chief features of the normal curve.
(f) The mean and the variance of X are 10 and 4 respectively. Find the mean and variance of $5-2 X$.
(g) Distinguish between p.m.f. and p.d.f.
(h) Find the median of a binomial distribution for $n=9, p=\frac{1}{2}$.

GROUP-B

2. Answer any three questions:
(a) Derive Poisson distribution as the limit of binomial distribution.
(b) State and prove Bayes' theorem.

UG/CBCS/B.Sc./Hons./4th Sem./Statistics/STAGE4/2022

(c) Let X be a binomially distributed random variable with parameters n and p. For what value of p is $\operatorname{var}(X)$ a maximum, if you assume that n is fixed?
(d) If X has Poisson distribution with parameter λ, then show that

$$
P[X \text { is even }]=\frac{1}{2}\left[1+e^{-2 \lambda}\right]
$$

(e) Find the points of inflection of the normal curve.

GROUP-C

3. Answer any two questions:
(a) Find the mean and variance of normal distribution.
(b) (i) Show that the expectation of the sum of two jointly distributed random variables X and Y is the sum of their expectations.
(ii) Prove the recurrence relation between the moments of Poisson distribution

$$
\mu_{r+1}=\lambda\left(r \mu_{r-1}+\frac{d \mu_{r}}{d \lambda}\right)
$$

where $\mu_{r}=\sum_{x=0}^{\infty}(x-\lambda)^{r} \frac{e^{-\lambda} \lambda^{x}}{x!}$ is the r-th moment about the mean λ.
(c) (i) Show that odd order central moments of the normal distribution are equal to zero.
(ii) The joint p.d.f. of (X, Y) is given by

$$
\begin{aligned}
f(x, y) & =2 \quad ; \quad 0<x<1,0<y<x \\
& =0 \quad ; \quad \text { otherwise }
\end{aligned}
$$

Find the marginal density of X and the conditional density of Y given $X=x$.
(d) (i) Let the variable X have the distribution $P(X=0)=P(X=2)=p$, $P(X=1)=1-2 p$, for $0 \leq p \leq \frac{1}{2}$. For what value of p is the $\operatorname{var}(X)$ maximum?
(ii) Find the expected value of the product of points obtained on rolling n dice together.

