

UNIVERSITY OF NORTH BENGAL

B.Sc. Programme 4th Semester Examination, 2022

DSC1/2/3-P4-STATISTICS

METHODS OF STATISTICAL INFERENCE

Time Allotted: 2 Hours

Full Marks: 40

 $1 \times 5 = 5$

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

1. Answer any *five* questions from the following:

- (a) What is estimation of a parameter?
- (b) What is power of a test?
- (c) What are the desirable criteria of a good point estimator?
- (d) Define an unbiased estimator.
- (e) What is level of significance?
- (f) What do you mean by efficiency of an estimator?
- (g) What is testing of hypothesis?
- (h) What are the sufficient conditions for consistency?

GROUP-B

2. Answer any *three* questions from the following:

(a) What is method of moments? Consider the pdf $f_{\theta}(x) = \frac{1}{\theta}e^{-\frac{x}{\theta}}$; x > 0. Estimate θ by method of moments.

- (b) What is likelihood function? What are the properties of maximum likelihood estimation?
- (c) If x_1, x_2, \dots, x_n are random observations on a Bernoulli variate x taking the value 1 with probability p and the value 0 with probability (1-p), show that $\overline{x}(1-\overline{x})$ is a consistent estimator of p(1-p).
- (d) On the basis of a random sample, find the mle (maximum likelihood estimation) of the parameter of the Binomial distribution.

1

 $5 \times 3 = 15$

UG/CBCS/B.Sc./Programme/4th Sem./Statistics/STADSC4/2022

(e) If the variances of independent and unbiased estimators T_1 , T_2 , T_3 of θ are in the ratio 2 : 3 : 5, which of the following estimators of θ would you prefer?

$$\frac{2T_1 + T_2 + T_3}{4} , \frac{T_1 + 2T_2 + T_3}{4} , \frac{T_1 + T_2 + 2T_3}{4}$$

GROUP-C

3. Answer any *two* questions from the following: 10×2 = 20
(a) (i) Let x₁, x₂,, x_n be a random sample from N(μ, σ²). Find the interval 5+5 estimation of μ when σ² known.
(ii) Prove that sample variance s² = 1/(n-1) (x_i - x̄)² is an unbiased estimator

of the population variance σ^2 .

(b) (i) What is uniformly minimum variance unbiased estimator? 2+2+6

- (ii) Define Cramer-Rao Inequality.
- (iii) Suppose x_1, x_2, \dots, x_n are random sample from $N(\mu, \sigma^2)$, the parameter σ^2 being known. The unknown parameter is $\theta = \mu$. Prove that \overline{x} is a minimum variance bound estimator for θ .
- (c) (i) A simple random sample (x_1, x_2, x_3, x_4) of size 4 is drawn from an 5+5 infinite population with mean μ and sd (standard deviation) σ . Given the two estimators of μ as follows:

$$T_1 = \frac{x_1 + 2x_2 + 3x_3 + 4x_4}{10}$$
 and $T_2 = \frac{x_1 + x_2}{3} + \frac{x_3 + x_4}{6}$

Which one is better? Why?

(ii) Let x_1, x_2, \dots, x_{n_1} and y_1, y_2, \dots, y_{n_2} be independent random samples from $N(\mu_1, \sigma_1^2)$ and $N(\mu_2, \sigma_2^2)$ respectively. Find the $100(1-\sigma)\%$ confidence interval for $(\mu_1 - \mu_2)$ when both σ_1^2 and σ_2^2 are unknown but $\sigma_1^2 = \sigma_2^2 = \sigma^2$.

-×-

(d) What is large sample test? In a big city, 325 men out of 600 were found to be 3+7 smokers. Does this information support the conclusion that the majority of men in this city are smokers?