UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 6th Semester Examination, 2022

CC14-MATHEMATICS

Partial Differential Equations and Applications

Time Allotted: 2 Hours
Full Marks: 60

> The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

Answer any four questions from the following

1. Solve the partial differential equation $p \tan x+q \tan y=\tan z$.
2. Eliminate the arbitrary function f to obtain a partial differential equation from
3. Find the region in the $x y$-plane where the partial differential equation $\left\{(x-y)^{2}-1\right\} z_{x x}+2 z_{x y}+\left\{(x-y)^{2}-1\right\} z_{y y}=0$ is hyperbolic.
4. Find the characteristic curves of $\sin ^{2} x z_{x x}+2 \cos x z_{x y}-z_{y y}=0$.
5. Find the degree of the following PDE:

$$
z_{x x}^{2}+2 z_{y}+\sin \left(z_{x}\right)=x^{2} y
$$

Write down the relation between arbitrary constants, independent variables and order of a PDE.
6. Obtain a solution of the partial differential equation $x p+y q=z$ representing a surface passing through the parabola $y^{2}=4 x, z=1$.

GROUP-B

Answer any four questions from the following

7. Apply $\sqrt{u}=v$ and $v(x, y)=f(x)+g(y)$ to solve the equation $x^{4} u_{x}^{2}+y^{2} u_{y}^{2}=4 u$.
8. Reduce the equation $y^{2} u_{x x}-2 x y u_{x y}+y^{2} u_{y y}=\frac{y^{2}}{x} u_{x}+\frac{x^{2}}{y} u_{y}$ to a canonical form.

UG/CBCS/B.Sc./Hons./6th Sem./Mathematics/MATHCC14/2022

9. Solve the non-homogeneous wave equation:

$$
\frac{\partial^{2} u}{\partial t^{2}}-4 \frac{\partial^{2} u}{\partial x^{2}}=\exp (-x), \quad-\infty<x<\infty, \quad t>0
$$

with the conditions: $u(x, 0)=x^{2}, u_{t}(x, 0)=\cos x$
10. A tightly stretched string of length l with fixed ends is initially in equilibrium position. It is set vibrating by giving each point a velocity $\sin ^{3}(\pi x / l)$. Find the displacement of the string out any distance from one end at any time t.
11. Find the temperature distribution in a laterally insulated rod of length ' l ' whose ends are also insulated and the initial temperature is given by

$$
u(x, 0)=\left\{\begin{array}{cc}
x & \text { if } 0<x \leq l / 2 \\
l-x & \text { if } l / 2<x<l
\end{array}\right.
$$

Where $u(x, t)$ represents temperature distribution, x is the spatial coordinate and t is the time coordinate. Also $u(x, t)$ is bounded as $t \rightarrow \infty$.
12. Reduce the equation $u_{x y}+x u_{y y}=0, x>0$ to its canonical form.

GROUP-C

Answer any two questions from the following

13.(a) Obtain the differential equation eliminating the arbitrary functions f and g from

$$
z=y f(x)+x g(y)
$$

(b) Reduce the equation $z_{x x}-4 z_{x y}+4 z_{y y}+z=0$ to its canonical form.
14.(a) Obtain the general solution of wave equation for a semi-infinite string with free end boundary condition, given that initial deflection $u(x, 0)=f(x)$ and initial velocity $\frac{\partial u}{\partial t}(x, 0)=g(x)$ where $u(x, t)$ represents the vertical deflection of string, x is the spatial coordinate and t is the time coordinate. Also discuss the case when initial velocity is zero.
(b) Solve the $\mathrm{PDE} \cos (x+y) z_{x}+\sin (x+y) z_{y}=z$. Classify the PDE.
15.(a) Show that the equations $x p-y q=x, x^{2} p+q=x z$ are compatible and find their solution.
(b) Find the characteristic strips of the equation $x p+y q-p q=0$ and obtain the equation of the integral surface through the curve $C: z=x / 2, y=0$.
16.(a) Use separation of variable to solve $4 \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=3 u$, given $u=3 e^{-y}-e^{-5 y}$ when $x=0$.
(b) Use Lagrange's method to solve: $x^{2}(y-z) p+y^{2}(z-x) q=z^{2}(x-y)$
(c) Use Charpit's method to solve: $p\left(p^{2}+1\right)+(b-z) q=0$

