

UNIVERSITY OF NORTH BENGAL B.Sc. Honours 6th Semester Examination, 2022

DSE-P3-MATHEMATICS

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks. All symbols are of usual significance.

The question paper contains DSE3A and DSE3B. Candidates are required to answer any one from the two courses and they should mention it clearly on the Answer Book.

DSE3A

POINT SET TOPOLOGY

GROUP-A

	Answer any <i>four</i> questions from the following	$3 \times 4 = 12$
1.	Give an example of a continuous bijective map between two spaces which is not a homeomorphism. Justify your answer.	3
2.	If $F(\mathbb{N})$ denotes the collection of all finite subsets of \mathbb{N} then find cardinality of $F(\mathbb{N})$.	3
3.	The co-countable topology on \mathbb{R} is defined as the collection of all sets $U \subset \mathbb{R}$ so that $\mathbb{R} \setminus U$ is either countable or all of \mathbb{R} . Is $[0, 1]$ a compact subspace of \mathbb{R} with co-countable topology.	3
4.	Show that $\frac{\frac{0}{0}}{A} = \frac{0}{A}$ and $\frac{c}{A} = \overset{0}{A}$, where A^c means complement of A.	3
5.	Let us consider \mathbb{R} with cofinite topology. Find closure of <i>A</i> and <i>B</i> where <i>A</i> is finite and <i>B</i> is infinite.	3
6.	Examine if every constant function $f: (X, J_1) \to (Y, J_2)$ is continuous.	3

GROUP-B

Answer any <i>four</i> questions from the following	$6 \times 4 = 24$
Prove that $2^a = c$, where $ \mathbb{N} = a$ and $ \mathbb{R} = c$.	6
Let $f:(X, J_Y) \to (Y, J_Y)$ be a mapping then prove that the following are	6

- 8. $(I, J_X) \rightarrow (I, J_Y)$ Ψŀ ŀ equivalent:
 - (i) f is continuous.

7.

UG/CBCS/B.Sc./Hons./6th Sem./Mathematics/MATHDSE3/2022

(ii) $f(\overline{A}) \subset \overline{f(A)}, \forall A \subset X$

(iii) for any closed set C in Y, $f^{-1}(C)$ is closed in X.

9.	Show that \mathbb{R} with usual topology is not compact but \mathbb{R} with cofinite topology is compact.	6
10.	Let X and Y be connected spaces. Show that $X \times Y$ is connected.	6
11.	Show that $\{(r, s); r < s, r, s \in Q\}$ is a basis for usual topology on \mathbb{R} but $\{[r, s); r < s, r, s \in Q\}$ is not a basis for \mathbb{R}_{ℓ} .	6
12.(a) (b)	Can we say that metric spaces are topological spaces? — Explain. Show that projection maps are continuous open but not closed.	2 4

GROUP-C

	Answer any two questions from the following	$12 \times 2 = 24$
13.(a)	Let X be a compact Hausdorff space and let (A_n) be a countable collection of closed sets in X. Show that if each set A_n has empty interior in X, then the union $\bigcup A_n$ also	7
	has empty interior in X	
(b)	Prove that continuous image of a connected space is connected.	5
14.(a)	Show that the function $f : \mathbb{R}_{\ell} \to \mathbb{R}$ defined by $f(x) = [x] \forall x \in \mathbb{R}$ is continuous.	6
(b)	Show that \mathbb{R}^n and \mathbb{R}^m cannot be homeomorphism if $m \neq n$.	6
15.(a)	By giving examples show that $a + c = c$, where $ \mathbb{N} = a$ and $ \mathbb{R} = c$.	5
(b)	Show that closed subset of a compact space is compact but a compact subset of a topological space may not be closed.	5+2
16.(a)	Show by an example that connectedness is necessary in the statement of intermediate value theorem.	3
(b)	Let A be a subset of a topological space X and (x_n) be a sequence in A such that	4+5
	$x_n \to x$. Show that $x \in \overline{A}$. Also show that if X is a metric space then the converse is true.	

DSE3B

BOOLEAN ALGEBRA AND AUTOMATA THEORY

GROUP-A

Answer any *four* questions from the following $3 \times 4 = 12$

1. Give an example of a bijective mapping between two ordered sets which is not an order isomorphism.

UG/CBCS/B.Sc./Hons./6th Sem./Mathematics/MATHDSE3/2022

- 2. Show by an example that union of two sublattices of a lattice may not be a sublattice.
- 3. Reduce the Boolean term $((x_1 + x_2).(x'_1 + x_3))'$ to DNF.
- 4. Identify the language L(M) accepted by the automaton M in the figure:

5. Let *M* be the NFA whose state diagram is given below:

Write down the transition table for this NFA. Also find L(M).

6. Let $\Sigma = \{0, 1\}$ and $T = \{\omega \in \Sigma^* : \omega \text{ contains even number of 1's}\}$. Show that T is an accepted language.

GROUP-B

		Answer any <i>four</i> questions from the following	$6 \times 4 = 24$
7.	(a)	Let L and K be two lattices and $f: L \to K$ be a map. Prove that f is a lattice isomorphism iff it is order isomorphism.	4
	(b)	Prove that every sublattice of a distributive lattice is also distributive.	2
8. (a)	(a)	Let <i>L</i> be a Boolean lattice. Then prove that for all $a, b \in L$, $a \wedge b' = 0$ iff $a \leq b$.	3
	(b)	Let X be any set. Define $FC(X) = \{A \subseteq X : A \text{ is finite OR } X \setminus A \text{ is finite}\}$. Prove that $(FC(X), \cup, \cap, ', \phi, X)$ is a Boolean Algebra.	3
9.		Suppose a 4-variable Boolean term is given as follows: $\phi = \sum m(0, 1, 2, 5, 7, 8, 9, 10, 13, 15)$	6

Minimize ϕ using Karnaugh map.

UG/CBCS/B.Sc./Hons./6th Sem./Mathematics/MATHDSE3/2022

- 10.(a) For the given ε -NFA, compute $\hat{\delta}(q_0, aba)$ and $\hat{\delta}(q_0, bba)$. a ε ε q_0 ε u
 - (b) Find epsilon closures of all the states of the given ε -NFA.

- For $\Sigma = \{a, b, c\}$, design a Turing machine that accepts $L = \{a^n b^n c^n \mid n \ge 1\}$. 11. 6
- 12.(a) Show that the language of palindromes over $\Sigma = \{a, b\}$ is a context free language. 4 (b) Distinguish between NFA and ε -NFA. 2

GROUP-C

Answer any two questions from the following $12 \times 2 = 24$

13.(a) Prove that a language L is accepted by some DFA iff L is accepted by some NFA. 6 3+3

4

(b) Find regular expression for the following DFAs:

3

14.(a) Draw the transition graph of the NPDA, $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$, where 6 $Q = \{q_0, q_1, q_2\}, \ \Sigma = \{a, b\}, \ \Gamma = \{a, b, z\}, \ F = \{q_2\} \text{ and } \delta \text{ is given by:}$ $\delta(q_0, a, z) = \{(q_1, a), (q_2, \lambda)\}$ $\delta(q_1, b, a) = \{(q_1, b)\}$ $\delta(q_1, b, b) = \{(q_1, b)\}$ $\delta(q_1, a, b) = \{(q_2, \lambda)\}$

- (b) Let $\Sigma = \{a, b\}$ be an alphabet. Show that the language $L = \{a^n b^n : n \ge 1\}$ is not a regular language but it is a CFL.
- 15.(a) Prove that a lattice L is non-distributive iff $N_5 \rightarrow L$ OR $M_3 \rightarrow L$. Here $L_1 \rightarrow L_2$ 8 means L_2 contains a sublattice isomorphic to L_1 .
 - (b) Consider the lattice *L* given below:

Which of the following are sublattices of *L*?

$$L_1 = \{0, a_1, a_2, 1\}$$
, $L_2 = \{0, a_1, a_5, 1\}$

Justify your answer.

16.(a) Draw a switching circuit which realizes the following Boolean expressions:

(i)
$$x(yz + y'z') + x'(yz' + y'z)$$

- (ii) (x + y + z + u)(x + y + u)(x + z)
- (b) For n∈ N, suppose D_n denotes the set of all positive divisors of n. Then prove that (D_n, ≤) is a Boolean lattice iff n is square free. Here, a ≤ b iff a | b. Here for a ∈ D_n, a' = n/a.

-×-

4

6

3+3