'समानो मन्त्र: समितिः समानी'

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 6th Semester Examination, 2022

DSE-P4-MATHEMATICS

Time Allotted: 2 Hours

The question paper contains DSE4A and DSE4B. Candidates are required to answer any one from the two courses and they should mention it clearly on the Answer Book.

DSE4A
Differential Geometry

GROUP-A

Answer any four questions from the following $3 \times 4=12$

1. For the curve $\bar{r}=\left(3 u, 3 u^{2}, 2 u^{3}\right)$, show that radius of curvature $R=\frac{3}{2}\left(1+2 u^{2}\right)^{2}$.
2. Find the equation to the developable surface which has the helix $x=a \cos u$, $y=a \sin u, z=c u$ for its edge of regression.
3. Find the length of the curve given as the intersection of the surfaces

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1, \quad x=a \cosh (z / a)
$$

from the point $(a, 0,0)$ to (x, y, z).
4. Prove that the geodesic curvature vector of a curve is orthogonal to the given curve.
5. If the $n^{\text {th }}$ derivative of \vec{r} with respect to s is given by $\vec{r}^{(n)}=a_{n} \vec{t}+b_{n} \vec{n}+c_{n} \vec{b}$, prove that $b_{n+1}=b_{n}^{\prime}+k a_{n}-\tau c_{n}$.
6. Prove that the curve given by $x=a \sin ^{2} u, y=a \sin u \cos u, z=a \cos u$ lies on a sphere.

GROUP-B

Answer any four questions from the following
7. Show that a curve is a helix if and only if the curvature and torsion of that curve are in constant ratio.
8. If the tangent and binormal at any point on a curve make angles θ and ϕ respectively with a fixed direction, then prove that $\frac{\sin \theta}{\sin \phi} \cdot \frac{d \theta}{d \phi}=-\frac{k}{\tau}$.
9. (a) Prove that the asymptotic lines are orthogonal iff the surface is minimal.
(b) Show that the parametric curve on a surface $r(u, v)=(u \cos v, u \sin v, v)$ are asymptotic line.
10. Find the parametric direction and angle between parametric curves.
11.(a) Find the equation of the tangent plane and normal to the surface $x y z=4$ at the point $(1,2,2)$.
(b) Prove that the surface $x y=(z-c)^{2}$ is developable.
12.(a) Define first fundamental form.
(b) Show that, if θ is the angle at the point (u, v) between the two directions given by $P d u^{2}+2 Q d u d v+R d v^{2}=0$; then $\tan \theta=\frac{2 H\left(Q^{2}-P R\right)^{1 / 2}}{E R-2 F Q+G P}$.

GROUP-C

Answer any two questions from the following
13. Prove that for any curve:
(i) $\bar{r}^{\prime} \cdot \bar{r}^{\prime \prime}=0$
(ii) $\bar{r}^{\prime} \cdot \bar{r}=-\kappa^{2}$
(iii) $\bar{r}^{\prime \prime} \cdot \bar{r}^{\prime \prime \prime}=\kappa \kappa^{\prime}$
(iv) $\bar{r} \cdot \bar{r}^{\prime v}=-3 \kappa \kappa^{\prime}$
(v) $\bar{r}^{\prime \prime} \cdot \bar{r}^{\prime \nu}=\kappa\left(\kappa^{\prime \prime}-\kappa^{3}-\kappa \tau^{2}\right)$
(vi) $\vec{r}^{\prime \prime \prime} \cdot \vec{r}^{\prime v}=\kappa^{\prime} \kappa^{\prime \prime}+2 \kappa^{3} \kappa^{\prime}+\kappa^{2} \tau \tau^{\prime}+\kappa \kappa^{\prime} \tau^{2}$
14.(a) State and prove Serret-Frenet formulae.
(b) Find the arc-length parametrization for each of the following curves:

$$
\vec{r}(t)=4 \cos t \hat{i}+4 \sin t \hat{j}, t \geq 0 \quad \text { and } \quad \vec{r}(t)=(t+3,2 t-4,2 t), t \geq 3
$$

15.(a) Show that the parametric curves are orthogonal on the surface

$$
r=\left(u \cos v, u \sin v, a \log \left\{u+\sqrt{u^{2}-\alpha^{2}}\right\}\right)
$$

(b) Find the Principal direction and Principal curvature on a point of the surface

$$
x=a(u+v), \quad y=b(u-v), \quad z=u v
$$

16.(a) Find the involute and evolute of a circular helix.
(b) Show that the curves $u+v=$ constant are geodesic on a surface with the metric

$$
\left(1+u^{2}\right) d u^{2}-2 u v d u d v+\left(1+v^{2}\right) d v^{2}
$$

DSE4B
 Theory of Equations

GROUP-A

Answer any four questions from the following

1. Apply Descartes' rule of signs to find the nature of the roots of the equation $x^{4}+x^{2}+x-1=0$.
2. If α, β, γ be the roots of the equation $x^{3}+3 x^{2}-x+3=0$, find the value of $\sum \frac{1}{\alpha}$.
3. Express the polynomial $8 x^{3}+2 x+2$ as a polynomial in $2 x-1$.
4. Find the remainder when $x^{10}+x^{7}+x^{4}+x^{3}+1$ is divided by $x^{2}+1$.
5. Form a cubic equation with real coefficients whose two of the roots are 1 and $-1-i$.
6. If α, β, γ be the roots of the equation $x^{3}+x-2=0$, then find the equation whose roots are $\alpha+3, \beta+3, \gamma+3$.

GROUP-B

Answer any four questions from the following

7. Find the range of values of k for which the equation $x^{4}-26 x^{2}+48 x-k=0$ has four unequal roots.
8. Calculate Sturm's function and locate the position of real roots of the equation $x^{4}-x^{2}-2 x-5=0$.
9. If α, β are the roots of the equation $t^{2}+2 t+4=0$ and m is a positive integer, then prove that $\alpha^{m}+\beta^{m}=2^{m+1} \cos \frac{2 m \pi}{3}$.
10.(a) Prove that the equation $(x+1)^{4}=a\left(x^{4}+1\right)$ is a reciprocal equation if $a \neq 1$ and solve it if $a=-2$.
(b) If $x^{3}+3 p x+q$ has a factor of the form $(x-\alpha)^{2}$, show that $q^{2}+4 p^{3}=0$.
10. If $\alpha+\beta+\gamma=1, \alpha^{2}+\beta^{2}+\gamma^{2}=3$ and $\alpha^{3}+\beta^{3}+\gamma^{3}=7$, find the value of $\alpha^{4}+\beta^{4}+\gamma^{4}$.
12.(a) Solve: $x^{3}-18 x-35=0$
(b) If α is an imaginary root of the equation $x^{11}-1=0$, prove that $(\alpha+2)\left(\alpha^{2}+2\right) \ldots \ldots\left(\alpha^{10}+2\right)=\frac{2^{11}+1}{3}$.

GROUP-C

Answer any two questions from the following

13.(a) Solve the equation $x^{4}+12 x^{3}-18 x^{2}+6 x+9=0$, given that the ratio of two roots is equal to the ratio of other two roots.
(b) Solve by Ferrari's method: $x^{4}-4 x^{3}+5 x+2=0$
14.(a) If α, β, γ are the roots of the equation $x^{3}+p x^{2}+q x+r=0$, find the equation whose roots are $\alpha \beta+\beta \gamma, \beta \gamma+\gamma \alpha, \gamma \alpha+\alpha \beta$.
(b) State Fundamental Theorem of classical algebra. If α is a root of the equation $\frac{1}{x-1}+\frac{2}{x-2}+\frac{3}{x-3}+\frac{4}{x-4}=x-5$, prove that α is a non-zero real number.
15.(a) Find the limits of the negative roots of the equation

$$
30 x^{4}+41 x^{3}-136 x^{2}+31 x+12=0
$$

(b) Express the polynomial $x^{4}+3 x^{3}+5 x^{2}+3 x+1$ as a polynomial in $(x-3)$ and $(x+2)$.
16.(a) Find the relation among the coefficients of the equation $x^{4}+p x^{3}+q x^{2}+r x+s=0$ if its roots α, β, γ and δ be connected by the relation $\alpha+\beta=\gamma+\delta$.
(b) Solve: $3 x^{6}+x^{5}-27 x^{4}+27 x^{2}-x-3=0$

