

'समानो मन्त्रः समितिः समानी' **UNIVERSITY OF NORTH BENGAL**

B.Sc. Major 1st Semester Examination, 2023

UMATMAJ11001-MATHEMATICS

CLASSICAL AND LINEAR ALGEBRA

Time Allotted: 2 Hours 30 Minutes

The figures in the margin indicate full marks.

GROUP-A

1.		Answer any <i>four</i> questions:	$3 \times 4 = 12$		
	(a)	Find the conditions that the roots of the equation $x^3 - px^2 + qx - r = 0$ are in G.P.	3		
	(b)	b) Find the real part of $(1+i\sqrt{3})^{1+i}$.			
	(c)	Prove that $n !> n^{\frac{n}{2}} (n > 1)$.	3		
	(d)	Applying Descarte's rule of signs, find the nature of the roots of the equation $x^{6} + x^{4} + x^{2} + x + 3 = 0$	3		
	(e)	If the amplitude of the complex number $\frac{z-1}{z+1}$ is $\frac{\pi}{4}$, show that z lies on a fixed	3		
		circle with centre i .			
	(f)	Find the characteristic equation and eigenvalues of the matrix $\begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$.	3		
	GROUP-B				
2.		Answer any <i>four</i> questions:	$6 \times 4 = 24$		
	(a)	Find the range of values of k for which the equation $x^4 - 26x^2 + 48x - k = 0$ has four unequal roots.	6		
	(b)	Solve the equation $x^3 - 6x - 4 = 0$ by Cardan's method.	6		
	(c)	If $a, b, c, d > 0$ and $a+b+c+d = 1$, prove that	6		
		$\frac{a}{1-1} + \frac{b}{1-1} + \frac{c}{1-1} + \frac{d}{1-1} \ge \frac{4}{7}$			
	(d)	1+b+c+d 1+a+c+d 1+a+b+d 1+a+b+c 7 If $u+iv = \tan(x+iy)$, then show that	6		
		(i) $u^2 + v^2 = 1 - 2u \cot 2x$; (ii) $u^2 + v^2 + 2v \left\{ \frac{e^{-2y} + e^{2y}}{e^{-2y} - e^{2y}} \right\} + 1 = 0$			
	(e)	Show that eigenvalues of a real symmetric matrix are all real.	6		
	(f)	Determine the conditions for which the system of Linear equations:	6		
		x + 2v + z = 1			

$$x + ay + 3z = b + 1$$

Has (i) only one solution, (ii) no solution, (iii) many solutions.

Full Marks: 60

GROUP-C

3.	Answer any <i>two</i> questions:			$12 \times 2 = 24$
(8	a) ((i)	Solve the equation $x^4 - 5x^3 + 11x^2 - 13x + 6 = 0$, given that two of its roots α and β are connected by the relation $3\alpha + 2\beta = 7$.	6
	((ii)	If α , β , γ be the roots of $x^3 + px^2 + qx + r = 0$ find the equation whose	6
			roots are $\frac{\alpha}{\beta + \gamma}$, $\frac{\beta}{\gamma + \alpha}$, $\frac{\gamma}{\alpha + \beta}$	
(ł	b) ((i)	Let n be a positive integer. Prove that	4
			$\frac{1}{\sqrt{4n+1}} < \frac{3 \cdot 7 \cdot 11 \cdots (4n-1)}{5 \cdot 9 \cdot 13 \cdots (4n+1)} < \sqrt{\frac{3}{4n+3}}$	
	((ii)	If a, b, c are positive real numbers and $abc = k^3$, prove that	3
			$(1+a)(1+b)(1+c) \ge (1+k)^3$	
	((iii)	Using Strum's theorem, find the subintervals of $(-4, 3)$ in which the roots	5
			of equation $x^4 - 12x^2 + 12x - 3 = 0$ lie.	
(0	c) ((i)	State Cayley-Hamilton theorem. Using this theorem, find A^{-1} , where	1+5
			$A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & -1 & 1 \\ 2 & 3 & -1 \end{pmatrix}$	
	((ii)	Examine if the matrices A and B are congruent, where	6
			$A = \begin{pmatrix} 2 & -2 & 0 \\ -2 & 1 & -2 \\ 0 & -2 & 0 \end{pmatrix} , B = \begin{pmatrix} 3 & 4 & 1 \\ 4 & 9 & 4 \\ 1 & 4 & 2 \end{pmatrix}$	
			$\begin{pmatrix} 1 & 0 & 1 \end{pmatrix}$	
(0	d) ((i)	For the matrix $A = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 1 & 2 \end{bmatrix}$, find non-singular matrices P and Q	6
			$\begin{pmatrix} -1 & 1 & 2 \end{pmatrix}$	
	(···\	Such that FAQ is the fully reduced normal form.	2
	((11)	If λ is an eigenvalue of a non-singular matrix A, then prove that λ is an eigenvalue of A^{-1} .	2
	((iii)	Find row-equivalent row-reduced echelon matrix to the matrix.	4
			$\begin{bmatrix} 1 & -1 & 2 & 0 \end{bmatrix}$	
			$\begin{vmatrix} 1 & 3 & -1 & 0 \\ 1 & 7 & 4 & 1 \end{vmatrix}$	
			$\begin{bmatrix} 1 & -4 & 1 \end{bmatrix}$	
			and nence find its rank.	
			X	