UNIVERSITY OF NORTH BENGAL

B.Sc. Major 1st Semester Examination, 2023

UMATMAJ11001-MATHEMATICS
 Classical and Linear Algebra

Time Allotted: 2 Hours 30 Minutes
Full Marks: 60
The figures in the margin indicate full marks.

GROUP-A

1. Answer any four questions:
$3 \times 4=12$
(a) Find the conditions that the roots of the equation $x^{3}-p x^{2}+q x-r=0$ are in G.P. 3
(b) Find the real part of $(1+i \sqrt{3})^{1+i}$. 3
(c) Prove that $n!>n^{\frac{n}{2}}(n>1)$. 3
(d) Applying Descarte's rule of signs, find the nature of the roots of the equation 3

$$
x^{6}+x^{4}+x^{2}+x+3=0
$$

(e) If the amplitude of the complex number $\frac{z-1}{z+1}$ is $\frac{\pi}{4}$, show that z lies on a fixed circle with centre i.
(f) Find the characteristic equation and eigenvalues of the matrix $\left(\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right)$.

GROUP-B

2. Answer any four questions:
(a) Find the range of values of k for which the equation $x^{4}-26 x^{2}+48 x-k=0$ has
(b) Solve the equation $x^{3}-6 x-4=0$ by Cardan's method.
(c) If $a, b, c, d>0$ and $a+b+c+d=1$, prove that

$$
\frac{a}{1+b+c+d}+\frac{b}{1+a+c+d}+\frac{c}{1+a+b+d}+\frac{d}{1+a+b+c} \geq \frac{4}{7}
$$

(d) If $u+i v=\tan (x+i y)$, then show that
(i) $u^{2}+v^{2}=1-2 u \cot 2 x$;
(ii) $u^{2}+v^{2}+2 v\left\{\frac{e^{-2 y}+e^{2 y}}{e^{-2 y}-e^{2 y}}\right\}+1=0$
(e) Show that eigenvalues of a real symmetric matrix are all real.
(f) Determine the conditions for which the system of Linear equations:

$$
\begin{aligned}
& x+2 y+z=1 \\
& 2 x+y+3 z=b \\
& x+a y+3 z=b+1
\end{aligned}
$$

Has (i) only one solution, (ii) no solution, (iii) many solutions.

GROUP-C

3. Answer any two questions:
(a) (i) Solve the equation $x^{4}-5 x^{3}+11 x^{2}-13 x+6=0$, given that two of its roots α and β are connected by the relation $3 \alpha+2 \beta=7$.
(ii) If α, β, γ be the roots of $x^{3}+p x^{2}+q x+r=0$ find the equation whose roots are $\frac{\alpha}{\beta+\gamma}, \frac{\beta}{\gamma+\alpha}, \frac{\gamma}{\alpha+\beta}$
(b) (i) Let n be a positive integer. Prove that

$$
\frac{1}{\sqrt{4 n+1}}<\frac{3 \cdot 7 \cdot 11 \cdots \cdots(4 n-1)}{5 \cdot 9 \cdot 13 \cdots \cdots(4 n+1)}<\sqrt{\frac{3}{4 n+3}}
$$

(ii) If a, b, c are positive real numbers and $a b c=k^{3}$, prove that

$$
(1+a)(1+b)(1+c) \geq(1+k)^{3}
$$

(iii) Using Strum's theorem, find the subintervals of $(-4,3)$ in which the roots of equation $x^{4}-12 x^{2}+12 x-3=0$ lie.
(c) (i) State Cayley-Hamilton theorem. Using this theorem, find A^{-1}, where

$$
A=\left(\begin{array}{ccc}
1 & 2 & 1 \\
1 & -1 & 1 \\
2 & 3 & -1
\end{array}\right)
$$

(ii) Examine if the matrices A and B are congruent, where

$$
A=\left(\begin{array}{ccc}
2 & -2 & 0 \\
-2 & 1 & -2 \\
0 & -2 & 0
\end{array}\right) \quad, \quad B=\left(\begin{array}{lll}
3 & 4 & 1 \\
4 & 9 & 4 \\
1 & 4 & 2
\end{array}\right)
$$

(d) (i) For the matrix $A=\left(\begin{array}{ccc}1 & 0 & 1 \\ 2 & 1 & 3 \\ -1 & 1 & 2\end{array}\right)$, find non-singular matrices P and Q such that $P A Q$ is the fully reduced normal form.
(ii) If λ is an eigenvalue of a non-singular matrix A, then prove that λ^{-1} is an eigenvalue of A^{-1}.
(iii) Find row-equivalent row-reduced echelon matrix to the matrix.

$$
\left[\begin{array}{cccc}
1 & -1 & 2 & 0 \\
2 & 2 & 1 & 5 \\
1 & 3 & -1 & 0 \\
1 & 7 & -4 & 1
\end{array}\right]
$$

and hence find its rank.
\qquad

