UNIVERSITY OF NORTH BENGAL

B.Sc. Sec 1st Semester Examination, 2023

UMATSEC11001-MATHEMATICS

Logic, Integers, and Boolean Algebra

Time Allotted: 2 Hours
Full Marks: 40
The figures in the margin indicate full marks.

GROUP-A

1. Answer any five questions: $1 \times 5=5$
(a) Represent the following expression as a switching circuits

$$
A\left(B C^{\prime}+B^{\prime} C\right)+A^{\prime} B C
$$

(b) For a prime p and a positive integer b, show that either p divides b or $\operatorname{gcd}(b, p)=1$.
(c) If $a \equiv b^{2}(\bmod 7)$, where a and b are any two given integers show that $7 \mid a^{4}-b^{8}$.
(d) Prove that the following proposition is tautology:

$$
\sim(p \wedge q) \vee q
$$

(e) If p is true and q is false, find the truth values of the following:

$$
(p \wedge q) \rightarrow(p \vee q)
$$

(f) Find the Boolean expression for the logic circuit.

(g) Write the negation of the following statement:
"If it is raining the game stands cancel"
(h) Find $\operatorname{gcd}(-100,246)$.

GROUP-B

2. Answer any three questions:
(a) Solve the linear congruence $9 x \equiv 12(\bmod 15)$.
(b) Use the principles of mathematical induction to prove that $(3+\sqrt{7})^{n}+(3-\sqrt{7})^{n}$ is an even integers for all $n \in \mathbb{N}$.
(c) Use Karnaugh map to simplify $X=A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B^{\prime} C$.

FYUGP/B.Sc./SEC/1st Sem./UMATSEC11001/2023

(d) Use the theory of congruence to prove that $7 \mid 2^{5 n+3}+5^{2 n+3}$ for all $n \geq 1$.
(e) Using a truth table to show that the following is a tautology:

$$
((P \vee Q) \wedge(P \rightarrow R) \wedge(Q \rightarrow R)) \rightarrow R
$$

GROUP-C

Answer any two questions

3. (a) Solve the following system of congruences

$$
\begin{aligned}
& X \equiv 3(\bmod 7) \\
& X \equiv 5(\bmod 9) \\
& X \equiv 4(\bmod 5)
\end{aligned}
$$

(b) Prove that $\sim(p \wedge q) \rightarrow(\sim p \vee(\sim p \vee q))=-p \vee q$.
(c) Convert the following Boolean function:

$$
f(x, y)=x \cdot y^{\prime}+x^{\prime} \cdot y+x^{\prime} \cdot y^{\prime} \quad \text { to maxterm expression (CNF) }
$$

4. (a) Draw a circuit which realize the Boolean function $f(x, y, z)=(x+y) \cdot(y+z) \cdot(z+x)$.

Use the laws of Boolean algebra to show that the above circuit is equivalent to a switching circuit in which if any two switches are on, the light is on. Construct the equivalent switching circuit.
(b) Prove that $a b \equiv a c(\bmod m) \Leftrightarrow b \equiv c\left(\bmod \frac{m}{\operatorname{gcd}(a, m)}\right)$.
(c) Use congruence to show that 35078571 is divisible by 9 .
5. (a) For any two element a and b in a Boolean algebra B, show that $(a \cdot b)^{\prime}=a^{\prime}+b^{\prime}$.
(b) For any integer n, show that $7 n+1$ and $15 n+2$ are relatively prime.
(c) Use the Quine-McCluskey algorithm to find the prime implicants of the following expression. Also find the minimal expression of the function

$$
f(a, b, c)=\sum m(0,2,3,7)
$$

6. (a) Write down an equivalent form of $P \wedge(Q \leftrightarrow R) \vee(R \leftrightarrow P)$, which does not contain a biconditional operator.
(b) (i) State Euclidean Algorithm. Use it to find $\operatorname{gcd}(119,272)$.
(ii) Prove that $a \equiv b(\bmod m) \Leftrightarrow a \equiv b\left(\bmod m_{1}\right)$ and $a \equiv b\left(\bmod m_{2}\right)$, where $m=m_{1} m_{2}$ and $\operatorname{gcd}\left(m_{1}, m_{2}\right)=1$.
(c) Translate each of the following into logical expression using predicates, quantifiers and logical connectivities.
(i) No Physics student know C++.
(ii) All Mathematics students know C++.
(iii) At least one Mathematics student know C++.

