

UNIVERSITY OF NORTH BENGAL

B.Sc. Major 1st Semester Examination, 2023

UPHYMAJ11001-PHYSICS

MATHEMATICAL PHYSICS-I

Time Allotted: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks.

GROUP-A

- 1. Answer any *five* questions from the following:
 - (a) $\vec{a} = 2\hat{i} + \hat{j} + 3\hat{k}$, $\vec{b} = \hat{i} + \hat{j} 2\hat{k}$ and $\vec{c} = 2\hat{i} + 3\hat{k}$ are three vectors such that $\vec{a} + \lambda \vec{b}$ is perpendicular to \vec{c} . Find the value of λ .
 - (b) What is the greatest rate of increase of $u = xyz^2$ at (1, 0, 3)?
 - (c) Find out whether $sin(\omega t)$ and $cos(\omega t)$ can be two solutions of a second order homogeneous ordinary differential equation.
 - (d) State Stokes' theorem in vector analysis.

(e) How many solutions the ordinary differential equation $\frac{2}{3}\frac{dy}{dx} = y^{1/3}$, y(0) = 0 have?

- (f) If $\oint_C \vec{A} \cdot d\vec{r} = 0$, is the vector field \vec{A} solenoidal or irrotational?
- (g) What is the expression of a unit vector perpendicular to both \vec{A} and \vec{B} ?

(h) Find the degree of the differential equation: $\left(\frac{d^2y}{dx^2} + 2\right)^{3/2} = x\left(\frac{dy}{dx}\right)$

GROUP-B

Answer any *three* questions from the following $5 \times 3 = 15$

2. (a) Find a second order homogeneous differential equation, whose solutions are $1, e^{-2x}$.

(b) Solve the differential equation
$$2xy\frac{dy}{dx} = x^2 + y^2$$
. 3

3. (a) Find the directional derivative of the divergence of $\vec{F} = xy\hat{i} + xy^2\hat{j} + z^2\hat{k}$ at the point (3, 1, 4) in the direction of outwardly directed normal to the sphere $x^2 + y^2 + z^2 = 4$.

1

(b) Evaluate
$$\vec{\nabla} \times (\phi \, \vec{\nabla} \, \phi)$$
.

 $1 \times 5 = 5$

2

3

FYUGP/B.Sc./MAJ/1st Sem./UPHYMAJ11001/2023

4. (a) Prove that spherical co-ordinate system is orthogonal.

(b) Prove that
$$\nabla^2(\ln r) = \frac{1}{r^2}$$
, where \vec{r} is the position vector. 2

- Represent the vector $\vec{F} = 2y\hat{i} 3x\hat{j} + x^2\hat{k}$ in cylindrical co-ordinate system. Thus 5. 5 determine F_{ρ} , F_{ϕ} and F_z .
- 6. (a) Find a vector normal to a plane consisting of points $P_1(0, 1, 0)$, $P_2(1, 0, 1)$ and 2 $P_3(0, 0, 1).$

(b) If
$$\vec{F} = (x^2 + y^2)\hat{i} + (x^2 - y^2)\hat{j}$$
, evaluate $\int_C \vec{F} \cdot d\vec{r}$ along the curve $y^2 = x$, from (0, 0) to (1, 1).

GROUP-C

Answer any <i>two</i> questions from the following	$10 \times 2 = 20$
--	--------------------

3

2 + 2

4

2

7. (a) Find the integrating factor of the differential equation:

$$x\cos x\frac{dy}{dx} + y(x\sin x + \cos x) = 1$$

Hence find the general solution.

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = x^3 + x$$

(c) If \hat{e} is an unit vector, show that $\vec{\nabla}(\hat{e} \cdot \vec{r}) \cdot \hat{e} = 1$.

- 8. (a) Verify Gauss's divergence theorem for $\vec{A} = 4x\hat{i} 2y^2\hat{j} + z^2\hat{k}$ over the region 4 bounded by $x^2 + y^2 = 4$, z = 0 and z = 3.
 - (b) Evaluate $\iint_{S} \vec{A} \cdot \hat{n} \, ds$ where, $\vec{A} = z\hat{i} x\hat{j} 3y^2 z \, \hat{k}$ and S is the surface of the cylinder $x^2 + y^2 = 16$ included in the first octant between z = 0 and z = 5. 6

9. (a) Find the value of $\oint_C \vec{F} \cdot d\vec{r}$ if $\vec{F} = (x^2 + y^2)\hat{i} - 2xy\hat{j}$ and C is the boundary of the 5 rectangle shown in fig.

FYUGP/B.Sc./MAJ/1st Sem./UPHYMAJ11001/2023

(b) A given vector is $\vec{u} = \frac{1}{3}(-y^3\hat{i} + x^3\hat{j} + z^3\hat{k})$ and \hat{n} is the unit normal vector to the surface of the hemisphere $(x^2 + y^2 + z^2 = 1; z \ge 0)$. Show that the value of the integral $\int_{S} (\vec{\nabla} \times \vec{u}) \cdot \hat{n} \, ds$ evaluated on the curved surface *S* of the hemisphere is $\frac{\pi}{2}$.

10.(a) Determine volume from
$$\int_{x=2}^{3} \int_{y=1}^{2} \int_{z=0}^{1} 8xyz \, dy$$
. 2

5

- (b) Show that the area of a region *R* enclosed by a simple closed curve *C* is given by $A = \frac{1}{2} \oint_C (x \, dy - y \, dx) = \oint_C x \, dy = -\oint_C y \, dx$ Hence calculate the area of the ellipse $x = a \cos \phi, \ y = b \sin \phi.$
- (c) If $\vec{r}(t)$ be a vector of fixed magnitude, show that $\frac{d\vec{r}(t)}{dt}$ is perpendicular to $\vec{r}(t)$. 3

___X____