

UNIVERSITY OF NORTH BENGAL

B.Sc. Major 1st Semester Examination, 2023

UPHYMAJ11001-PHYSICS
 Mathematical Physics-I

Time Allotted: 2 Hours
Full Marks: 40
The figures in the margin indicate full marks.

GROUP-A

1. Answer any five questions from the following:
(a) $\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}, \vec{b}=\hat{i}+\hat{j}-2 \hat{k}$ and $\vec{c}=2 \hat{i}+3 \hat{k}$ are three vectors such that $\vec{a}+\lambda \vec{b}$ is perpendicular to \vec{c}. Find the value of λ.
(b) What is the greatest rate of increase of $u=x y z^{2}$ at $(1,0,3)$?
(c) Find out whether $\sin (\omega t)$ and $\cos (\omega t)$ can be two solutions of a second order homogeneous ordinary differential equation.
(d) State Stokes' theorem in vector analysis.
(e) How many solutions the ordinary differential equation $\frac{2}{3} \frac{d y}{d x}=y^{1 / 3}, y(0)=0$ have?
(f) If $\oint_{C} \vec{A} \cdot d \vec{r}=0$, is the vector field \vec{A} solenoidal or irrotational?
(g) What is the expression of a unit vector perpendicular to both \vec{A} and \vec{B} ?
(h) Find the degree of the differential equation: $\left(\frac{d^{2} y}{d x^{2}}+2\right)^{3 / 2}=x\left(\frac{d y}{d x}\right)$

GROUP-B

Answer any three questions from the following

2. (a) Find a second order homogeneous differential equation, whose solutions are
3. (a) Find the directional derivative of the divergence of $\vec{F}=x y \hat{i}+x y^{2} \hat{j}+z^{2} \hat{k}$ at the point $(3,1,4)$ in the direction of outwardly directed normal to the sphere $x^{2}+y^{2}+z^{2}=4$.
(b) Evaluate $\vec{\nabla} \times(\phi \vec{\nabla} \phi)$.

FYUGP/B.Sc./MAJ/1st Sem./UPHYMAJ11001/2023

4. (a) Prove that spherical co-ordinate system is orthogonal.
(b) Prove that $\nabla^{2}(\ln r)=\frac{1}{r^{2}}$, where \vec{r} is the position vector.
5. Represent the vector $\vec{F}=2 y \hat{i}-3 x \hat{j}+x^{2} \hat{k}$ in cylindrical co-ordinate system. Thus determine F_{ρ}, F_{ϕ} and F_{z}.
6. (a) Find a vector normal to a plane consisting of points $P_{1}(0,1,0), P_{2}(1,0,1)$ and $P_{3}(0,0,1)$.
(b) If $\vec{F}=\left(x^{2}+y^{2}\right) \hat{i}+\left(x^{2}-y^{2}\right) \hat{j}$, evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ along the curve $y^{2}=x$, from $(0,0)$ to $(1,1)$.

GROUP-C

Answer any two questions from the following

7. (a) Find the integrating factor of the differential equation:

$$
x \cos x \frac{d y}{d x}+y(x \sin x+\cos x)=1
$$

Hence find the general solution.
(b) Solve the differential equation:

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=x^{3}+x
$$

(c) If \hat{e} is an unit vector, show that $\vec{\nabla}(\hat{e} \cdot \vec{r}) \cdot \hat{e}=1$.
8. (a) Verify Gauss's divergence theorem for $\vec{A}=4 x \hat{i}-2 y^{2} \hat{j}+z^{2} \hat{k}$ over the region bounded by $x^{2}+y^{2}=4, z=0$ and $z=3$.
(b) Evaluate $\iint_{S} \vec{A} \cdot \hat{n} d s$ where, $\vec{A}=z \hat{i}-x \hat{j}-3 y^{2} z \hat{k}$ and S is the surface of the cylinder $x^{2}+y^{2}=16$ included in the first octant between $z=0$ and $z=5$.
9. (a) Find the value of $\oint_{C} \vec{F} \cdot d \vec{r}$ if $\vec{F}=\left(x^{2}+y^{2}\right) \hat{i}-2 x y \hat{j}$ and C is the boundary of the rectangle shown in fig.

FYUGP/B.Sc./MAJ/1st Sem./UPHYMAJ11001/2023

(b) A given vector is $\vec{u}=\frac{1}{3}\left(-y^{3} \hat{i}+x^{3} \hat{j}+z^{3} \hat{k}\right)$ and \hat{n} is the unit normal vector to the surface of the hemisphere $\left(x^{2}+y^{2}+z^{2}=1 ; z \geq 0\right)$. Show that the value of the integral $\int_{S}(\vec{\nabla} \times \vec{u}) \cdot \hat{n} d s$ evaluated on the curved surface S of the hemisphere is $\frac{\pi}{2}$.
10.(a) Determine volume from $\int_{x=2}^{3} \int_{y=1}^{2} \int_{z=0}^{1} 8 x y z d v$.
(b) Show that the area of a region R enclosed by a simple closed curve C is given by
$A=\frac{1}{2} \oint_{C}(x d y-y d x)=\oint_{C} x d y=-\oint_{C} y d x$. Hence calculate the area of the ellipse $x=a \cos \phi, y=b \sin \phi$.
(c) If $\vec{r}(t)$ be a vector of fixed magnitude, show that $\frac{d \vec{r}(t)}{d t}$ is perpendicular to $\vec{r}(t)$.

