

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours Part-II Examination, 2021

Mathematics
 Paper-V

Full Marks: 50

AssignMENT

The figures in the margin indicate full marks. All symbols are of usual significance.

Answer all questions

GROUP-A

1. (a) Use Cauchy's Principle of convergence to prove that the series $\sum \frac{1}{n}$ does not converge.
(b) Show that the series $\sum \frac{1}{\sqrt{n}} \tan \frac{1}{n}$ is convergent.
(c) Test the convergence of the series $1+\frac{2^{2}}{2!}+\frac{3^{2}}{3!}+\frac{4^{2}}{4!}+\cdots \cdots$.
2. (a) Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and $x_{1}, x_{2}, x_{3} \in[a, b]$. Prove that there is 3 a point $c \in[a, b]$ such that $f(c)=\frac{f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)}{2!}$.
(b) A function $f:[a, b] \rightarrow \mathbb{R}$ is said to be satisfy a Lipschitz condition of order α on $[a, b]$ if there exists a real number $M>0$ such that $|f(x)-f(y)|<M|x-y|^{\alpha}$ for all $x, y \in[a, b]$.
If f satisfies a Lipschitz condition of order $\alpha>1$ on $[a, b]$ prove that f is a constant function on $[a, b]$.
(c) Find the points of local maximum and local minimum of the function

$$
f(x)=8 x^{5}-10 x^{3}+5 x^{2}+1, \quad x \in \mathbb{R}
$$

GROUP-B

3. (a) Show that for the function $f(x, y)=\left\{\begin{array}{cl}\frac{x^{2} y^{2}}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & \text { if } x=y=0\end{array}\right.$
$f_{x y}(0,0)=f_{y x}(0,0)$, even through the conditions of Schwarz's theorem and also of Young's theorem are not satisfied.

B.Sc./Part-II/Hons./(1+1+1) System/MTMH-V/2021

(b) The roots of the equation in $\alpha,(\alpha-x)^{3}+(\alpha-y)^{3}+(\alpha-z)^{3}=0$ are u, v, w.

Prove that $\frac{\partial(u, v, w)}{\partial(x, y, z)}=-2 \frac{(y-z)(z-x)(x-y)}{(v-w)(w-u)(u-v)}$.

GROUP-C

4. (a) Find the interval on which the function is concave up or concave down,

$$
g(x)=x^{3}-3 x^{2}-9 x+1
$$

(b) If $I_{n}=\int_{0}^{\pi / 2} x \sin ^{n} x d x$ and $n>1$ then, prove that $I_{n}=\frac{n-1}{n} I_{n-2}+\frac{1}{n^{2}}$.
5. (a) Given $g(x)=\frac{3 x^{2}+4 x-3}{x^{2}+3}$, determine the horizontal asymptote and the point where the graph crosses the horizontal asymptote.
(b) Find the stationary points of the function $y=2 x^{3}-9 x^{2}+12 x-3$ and determine their 5 nature.

