UNIVERSITY OF NORTH BENGAL

B.Sc. Honours Part-II Examination, 2021

Mathematics

Integral Calculus-II and Dynamics of a Particle PAPER-VI

Full Marks: 50

AssignMENT
The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

Answer all questions

1. (a) Let $f:[0,1] \rightarrow \mathbb{R}$ be such that $f(x)=x$ for x rational number and $f(x)=0$ for x irrational number. Evaluate the upper and lower integrals of f and show that f is not integrable.
(b) Using Riemann criterion, examine whether the function $f(x)=\frac{1}{x}$ is integrable on $[0,2]$ or not.

GROUP-B

Answer all questions

2. (a) If time t be regarded as a function of velocity v, then prove that the rate of decrease of acceleration is given by $f^{3} \frac{d^{2} t}{d v^{2}}$.
(b) A particle moving in a plane besides the central acceleration P, an acceleration T perpendicular to P is acting on it. Show that in usual notation the differential equation of the path is $\frac{d^{2} u}{d \theta^{2}}+u=\frac{P-\frac{T d u}{u d \theta}}{h^{2}-u^{2}}$.
3. (a) A particle rests in equilibrium under the attraction of two centers of force which attract directly as the distance, their intensities being μ and μ^{\prime}. The particle is slightly displaced toward one of them, show that the time of small oscillation is $\frac{2 \pi}{\sqrt{\mu+\mu^{\prime}}}$.

B.Sc./Part-II/Hons./(1+1+1) System/MTMH-VI/2021

(b) If the radial and transverse velocity of a particle be always proportional to each other, then show that the path is an equiangular spiral.
4. (a) A particle is projected vertically upwards with a velocity v_{0}, in a resisting medium which produces a retardation $k v^{2}$ when the velocity is v. Show that the particle comes to rest at a height $\frac{V^{2}}{2 g} \log _{e}\left(1+\frac{v_{0}^{2}}{V^{2}}\right)$ above the point of projection where V is the terminal velocity. Show further that the velocity v_{1} of the particle when it reaches the point of projection is given by $\frac{1}{v_{1}^{2}}=\frac{1}{v_{0}^{2}}+\frac{1}{V^{2}}$.
(b) A particle describes the curve $r^{2}=a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta$ under an attraction to the origin. Prove that the attraction at a distance r is $h^{2}\left\{2\left(a^{2}+b^{2}\right) r^{2}-3 a^{2} b^{2}\right\} r^{-7}$, where symbol h has its usual meaning.
5. (a) A boat which is rowed with constant velocity u, starts from a point A on the bank of a river which flows with a constant velocity v and it points always towards a point B on the other bank exactly opposite to A. Find the equation of the path of the boat. If $u=v$, then show that the path is a parabola whose focus is B.
(b) If T be the time taken by a heavenly body to describe an arc of a parabolic orbit

