

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours Part-II Examination, 2021

Mathematics

PAPER-VIII

Full Marks: 50

Abstract

AssignMENT The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

1. Answer all questions:
(a) Show that the locus of the point from which three mutually perpendicular lines can be drawn to intersect the conic

$$
z=0, a x^{2}+b y^{2}=1 \text { is } a x^{2}+b y^{2}+(a+b) z^{2}=1
$$

(b) (i) Obtain the equation of the sphere through the points $(1,1,2)$ and $(2,-2,3)$ and having its centre on the line $2 x+3 y=0=5 x+y-z$.
(ii) A variable plane which is at a constant distance $3 p$ from the origin O cuts the axes in A, B, C. Show that the locus of the centroid of the triangle $A B C$ is

$$
x^{-2}+y^{-2}+z^{-2}=p^{-2}
$$

(c) (i) Find the angle between the lines whose direction cosines satisfy the equations

$$
l+m+n=0 \quad \text { and } \quad 2 n l+2 l m-m n=0
$$

(ii) Show that the straight line $\frac{x-\alpha}{l}=\frac{y-\beta}{m}=\frac{z-\gamma}{n}$ meets the locus of the equation $a x^{2}+b y^{2}+c z^{2}=1$ in two points.
(d) Find the locus of luminous points of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ that casts a circular shadow on the plane $z=0$.
(e) A variable plane is parallel to the given plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0$ and meets the axes in A, B, C. Prove that the circle $A B C$ lies on the cone

$$
y z\left(\frac{b}{c}+\frac{c}{a}\right)+z x\left(\frac{c}{a}+\frac{a}{c}\right)+x y\left(\frac{a}{b}+\frac{b}{a}\right)=0
$$

GROUP-B

2. Answer all questions:
(a) (i) Using Laplace transform, solve the initial value problem:

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+5 y=e^{-x} \sin x, \text { given that } y(0)=0, y^{\prime}(0)=1
$$

(ii) Form a partial differential equation by eliminating the function ϕ from

$$
l x+m y+n z=\phi\left(x^{2}+y^{2}+z^{2}\right)
$$

(b) Find the series solution of $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-4\right)=0$ about $x=0$.
(c) Solve: $y^{\prime \prime}-4 x y^{\prime}+\left(4 x^{2}-1\right) y=-3 e^{x^{2}} \sin 2 x$ by reduction to Normal form.
(d) Find a complete integral of $p x^{2}+2 q x y-p q=2 x z$ by Charpit's method, where symbols have their usual meaning.
(e) Find the eigen values and the corresponding eigen functions for the given differential equation.

$$
\frac{d^{2} y}{d x^{2}}+\lambda y=0, \quad \lambda>0 \text { given that } y(0)+y^{\prime}(0)=0, \quad y(1)+y^{\prime}(1)=0
$$

