UNIVERSITY OF NORTH BENGAL

B.Sc. Honours Part-III Examination, 2021

Chemistry

Paper-IX

Physical Chemistry
Full Marks: 65

Assignment
 The figures in the margin indicate full marks. All symbols are of usual significance.

1 Mark for neat and precise presentation

Answer any four questions
 $16 \times 4=64$

1. (a) On doubling the concentration of reactant, rate of the reaction is doubled. Find out the order of the reaction.
(b) Distinguish between physical adsorption and chemisorption.
(c) Explain adsorption isotherm and adsorption isobar. 2
(d) Mentioning the assumptions derive the Langmuir adsorption isotherm. How will $2+3+2$ you derive Freundlich isotherm from this isotherm?
(e) Explain the formation, stability and use of 'micelles'.
2. (a) Compare the characteristics of the first order reactions with those of the second order reactions.
(b) Examine the order of the following reaction:

$$
\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+\mathrm{H}_{2} \mathrm{O}=2 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}
$$

(c) Describe how you would determine the energy of activation of a chemical reaction from the temperature dependence of reaction rates.
(d) A first order reaction is 40% complete in 30 minutes. How long will it take to be 80% complete?
(e) Explain: "Zero-order reaction must be multistep and it goes into completion".
3. (a) Derive Bragg's equation for the diffraction of X-rays by crystals.
(b) Both NaCl and KCl have similar geometric arrangements of positive and negative ions in their crystals, but their diffraction patterns are different. - Explain.
(c) Show that 74% of the space in a crystal is occupied by atoms in a face centred cubic lattice.
(d) Molybdenum (Molar mass $=95.94 \mathrm{~g} \mathrm{~mol}^{-1}$) crystallises with a body centred cubic lattice has a density of $10.28 \mathrm{~g} \mathrm{~cm}^{-3}$. Calculate the length of the unit cell and the distance between 110 planes.
(e) Geometrically prove that a crystal cannot have a 5 -fold rotation axis as well as an axis of greater than 6 -fold symmetry.
4. (a) Set up the Schrodinger equation for a particle in a one-dimensional box. Show that the solution of this equation leads to the quantization of translational motion. Why a value of quantum number $n=0$ is not permitted?

B.Sc./Part-III/Hons./(1+1+1) System/CEMH-IX/2021

(b) Clearly explain the term degeneracy in quantum mechanics. Show that in a rectangular box of dimensions $l_{x}=a$ and $l_{y}=2 a$, there is an accidental degeneracy for the states $\left(n_{x}=1, n_{y}=4\right)$ and ($\left.n_{x}=2, n_{y}=2\right)$.
(c) What do you mean by 'infrared active' and 'microwave active' molecules in spectroscopy? Give examples.
(d) Show that the de Broglie's hypothesis leads to Bohr's postulate of quantisation of angular momentum.
5. (a) What do you mean by photochemical reactions? Distinguish these from thermal reactions.
(b) State and explain Lambert-Beer law. Derive the integrated mathematical expression for this law. What is the significance of molar extinction coefficient?
(c) Explain singlet and triplet states.
(d) Distinguish between fluorescence and phosphorescence.
(e) How would you explain very high and very low quantum yields of some photochemical reactions?
6. (a) Derive the expression for the operator $\left(\hat{x}+\frac{d}{d x}\right)^{2}$.
(b) Verify that $f=\sin a x$ [where a is a constant] is not an eigen function of $\frac{d}{d x}$. Modify the operator $\frac{d}{d x}$ so that the said function will be an eigen function.
Find out the eigen value.
(c) Verify whether the following operators will commute or not.

$$
\left(\hat{x}+\boldsymbol{i} \frac{d}{d x}\right),\left(\hat{x}-\boldsymbol{i} \frac{d}{d x}\right)
$$

(d) Draw the sketches of ψ and ψ^{2} for a particle in one dimensional box for the first five energy levels. Discuss about symmetry of the five wave functions.
7. (a) Show that the entropy is a logarithmic function of thermodynamic probability. 3
(b) How is molecular partition function defined? What is the effect of temperature on molecular partition function?
(c) For a system the energy levels are $0, \varepsilon, 2 \varepsilon, 3 \varepsilon$ and the degeneracy of the energy levels are $1,1,3,5$ respectively. Find out the molecular partition function at 300 K . Given: $\varepsilon=4.14 \times 10^{-21} \mathrm{~J}$
(d) Derive Einstein's equation for the heat capacity of solid and arrive at Dulong-Petit law form this equation.
8. (a) Derive Michaelis-Menten equation. What is the significance of Michaelis constant? 3+1
(b) Discuss the structural differences between DNA and RNA molecules.
(c) Explain the Lock and Key theory of enzyme action. 2
(d) What is 'turnover number'? 1
(e) Show that the energy difference between two adjacent lines in the rotational $3+3$ spectrum of a rigid diatomic molecule is constant but the rotational intensities of transition occurring in the molecule are different.

