

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours Part-III Examination, 2021

CHEMISTRY

PAPER-IX

PHYSICAL CHEMISTRY

Full Marks: 65

ASSIGNMENT

The figures in the margin indicate full marks. All symbols are of usual significance.

1 Mark for neat and precise presentation

		Answer any <i>four</i> questions	16×4=64
1.	(a)	On doubling the concentration of reactant, rate of the reaction is doubled. Find out the order of the reaction.	1
	(b)	Distinguish between physical adsorption and chemisorption.	3
	(c)	Explain adsorption isotherm and adsorption isobar.	2
	(d)	Mentioning the assumptions derive the Langmuir adsorption isotherm. How will you derive Freundlich isotherm from this isotherm?	2+3+2
	(e)	Explain the formation, stability and use of 'micelles'.	3
2.	(a)	Compare the characteristics of the first order reactions with those of the second order reactions.	3
	(b)	Examine the order of the following reaction:	2
		$C_{12}H_{22}O_{11} + H_2O = 2C_6H_{12}O_6$	
	(c)	Describe how you would determine the energy of activation of a chemical reaction from the temperature dependence of reaction rates.	5
	(d)	A first order reaction is 40% complete in 30 minutes. How long will it take to be 80% complete?	3
	(e)	Explain: "Zero-order reaction must be multistep and it goes into completion".	3
3.	(a)	Derive Bragg's equation for the diffraction of X-rays by crystals.	4
	(b)	Both NaCl and KCl have similar geometric arrangements of positive and negative ions in their crystals, but their diffraction patterns are different. — Explain.	3
	(c)	Show that 74% of the space in a crystal is occupied by atoms in a face centred cubic lattice.	3
	(d)	Molybdenum (Molar mass = 95.94 g mol^{-1}) crystallises with a body centred cubic lattice has a density of 10.28 g cm ⁻³ . Calculate the length of the unit cell and the distance between 110 planes.	3
	(e)	Geometrically prove that a crystal cannot have a 5-fold rotation axis as well as an axis of greater than 6-fold symmetry.	3
4.	(a)	Set up the Schrodinger equation for a particle in a one-dimensional box. Show that the solution of this equation leads to the quantization of translational motion. Why	2+4+1

a value of quantum number n = 0 is not permitted?

B.Sc./Part-III/Hons./(1+1+1) System/CEMH-IX/2021

B.SC./Part-III/Hons./(1+1+1) System/CEI/IH-IA/2021				
	(b)	Clearly explain the term degeneracy in quantum mechanics. Show that in a rectangular box of dimensions $l_x = a$ and $l_y = 2a$, there is an accidental	2+3	
		degeneracy for the states $(n_x = 1, n_y = 4)$ and $(n_x = 2, n_y = 2)$.		
	(c)	What do you mean by 'infrared active' and 'microwave active' molecules in spectroscopy? Give examples.	2	
	(d)	Show that the de Broglie's hypothesis leads to Bohr's postulate of quantisation of angular momentum.	2	
5.	(a)	What do you mean by photochemical reactions? Distinguish these from thermal reactions.	1+2	
	(b)	State and explain Lambert-Beer law. Derive the integrated mathematical expression for this law. What is the significance of molar extinction coefficient?	2+3+1	
	(c)	Explain singlet and triplet states.	2	
	(d)	Distinguish between fluorescence and phosphorescence.	3	
	(e)	How would you explain very high and very low quantum yields of some photochemical reactions?	2	
6.	(a)	Derive the expression for the operator $(\hat{x} + \frac{d}{dx})^2$.	3	
	(b)	Verify that $f = \sin ax$ [where a is a constant] is not an eigen function of $\frac{d}{dx}$.	3	
		Modify the operator $\frac{d}{dx}$ so that the said function will be an eigen function.		
		Find out the eigen value.		
	(c)	Verify whether the following operators will commute or not. $\left(\hat{x} + i\frac{d}{dx}\right), \left(\hat{x} - i\frac{d}{dx}\right)$	3	
	(d)	Draw the sketches of ψ and ψ^2 for a particle in one dimensional box for the first five energy levels. Discuss about symmetry of the five wave functions.	5+2	
7.	(a)	Show that the entropy is a logarithmic function of thermodynamic probability.	3	
		How is molecular partition function defined? What is the effect of temperature on molecular partition function?	2+2	
	(c)	For a system the energy levels are 0, ε , 2ε , 3ε and the degeneracy of the energy levels are 1, 1, 3, 5 respectively. Find out the molecular partition function at 300 K. Given: $\varepsilon = 4.14 \times 10^{-21}$ J	3	
	(d)	Derive Einstein's equation for the heat capacity of solid and arrive at Dulong-Petit law form this equation.	4+2	
8.	(b)	Derive Michaelis-Menten equation. What is the significance of Michaelis constant? Discuss the structural differences between DNA and RNA molecules.	3+1 3	
		Explain the Lock and Key theory of enzyme action.	2	
	` ´	What is 'turnover number'? Show that the energy difference between two adjacent lines in the rotational spectrum of a rigid diatomic molecule is constant but the rotational intensities of transition occurring in the molecule are different.	1 3+3	

_____X_____