

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours Part-III Examination, 2021

MATHEMATICS

PAPER-IX

LINEAR PROGRAMMING AND OPTIMIZATION, TENSOR ALGEBRA AND ANALYSIS

Full Marks: 50

ASSIGNMENT

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

Answer all the questions $10 \times 3 = 30$

- 5+3+2
- 1. (a) Prove that $x_1 = 2$, $x_2 = 1$ and $x_3 = 3$ is a feasible solution of the set of equations $4x_1 + 2x_2 - 3x_3 = 1$, $-6x_1 - 4x_2 + 5x_3 = -1$. Reduce the feasible solution to a basic feasible solution by reduction theory.
 - (b) Solve graphically the L.P.P.

Maximize
$$z = 2x_1 + x_2$$

Subject to $x_1 + x_2 \le 2$
 $-x_1 + x_2 \le 1$
 $x_1 \le 2$
and $x_1, x_2 \ge 0$

(c) Find the dual of the following L.P.P.

Maximize
$$z = 4x_1 - 7x_2$$

Subject to
$$3x_1 + x_2 \le 16$$
$$x_1 - 2x_2 \le 12$$
$$x_1 \ge 2$$
$$x_2 \ge 4$$
$$x_1 \ge 0, x_2 \ge 0$$

- 2. (a) Prove that the set $X = \{(x, y) \in \mathbb{R}^2 : xy \le 1, x \ge 0, y \ge 0\}$ is not convex. 2+2+6
 - (b) Find out the extreme points (if any) of the convex set

$$X = \{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 16 \}$$

B.Sc./Part-III/Hons./(1+1+1) System/MTMH-IX/2021

	Α	В	С	D	Ε	a_i
Ι	4	1	3	4	4	60
II	2	3	2	2	3	35
III	3	5	2	4	4	40
b_j	22	45	20	18	30	

(c) Obtain the optimal solution of the following transportation problem:

3. (a) Solve the following L.P.P. by Big-M method:

Maximize Subject to $z = 5x_1 - 2x_2 + 3x_3$ $2x_1 + 2x_2 - x_3 \ge 2,$ $3x_1 - 4x_2 \le 3$ $x_2 + 3x_3 \le 5,$ $x_1, x_2, x_3 \ge 0$

(b) Solve the following assignment problem:

	Р	Q	R	S	Т
Ι	9	8	7	6	4
Π	5	7	5	6	8
III	8	7	6	3	5
IV	8	5	4	9	3
V	6	7	6	8	5

GROUP-B

Answer *all* the questions

 $5 \times 4 = 20$

- 4. (a) If the intrinsic derivative of non-null vector \vec{A} along a curve is zero, show that 2+3 the magnitude of \vec{A} is constant along the curve.
 - (b) Show that a second order covariant tensor can be expressed as a sum of a symmetric and a skew symmetric tensor.
- 5. If the metric is given by $ds^2 = 5(dx^1)^2 + 3(dx^2)^2 + 4(dx^3)^2 6dx^1dx^2 + 4dx^2dx^3$, 5 then find the conjugate metric tensor.
- 6. (a) Prove that $A_j^{ij} = \frac{1}{\sqrt{g}} \frac{\partial}{\partial x^j} \left(A^{ij} \sqrt{g} \right) + A^{jp} \begin{cases} i \\ j p \end{cases}$, where A^{ij} is a tensor of 3+2 type (2, 0).
 - (b) If $R_{ii,k} + R_{ik,i} + R_{ki,j} = 0$, prove that the scalar curvature R is constant.
- 8. Surface of a sphere is a two dimensional Riemannian space. Compute the 5 Christoffel symbols.

-×-

5+5

3077