UNIVERSITY OF NORTH BENGAL

B.Sc. Honours Part-III Examination, 2021

Mathematics
 Paper-IX

Linear Programming and Optimization, Tensor Algebra and Analysis

Full Marks: 50

AssignMENT

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

Answer all the questions $\quad 10 \times 3=30$

1. (a) Prove that $x_{1}=2, x_{2}=1$ and $x_{3}=3$ is a feasible solution of the set of equations $4 x_{1}+2 x_{2}-3 x_{3}=1,-6 x_{1}-4 x_{2}+5 x_{3}=-1$. Reduce the feasible solution to a basic feasible solution by reduction theory.
(b) Solve graphically the L.P.P.

$$
\begin{array}{cc}
\text { Maximize } & z=2 x_{1}+x_{2} \\
\text { Subject to } & x_{1}+x_{2} \leq 2 \\
& -x_{1}+x_{2} \leq 1 \\
& x_{1} \leq 2 \\
\text { and } & x_{1}, x_{2} \geq 0
\end{array}
$$

(c) Find the dual of the following L.P.P.

$$
\begin{array}{ll}
\text { Maximize } & z=4 x_{1}-7 x_{2} \\
\text { Subject to } & 3 x_{1}+x_{2} \leq 16 \\
& x_{1}-2 x_{2} \leq 12 \\
& x_{1} \geq 2 \\
& x_{2} \geq 4 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{array}
$$

2. (a) Prove that the set $X=\left\{(x, y) \in \mathbb{R}^{2}: x y \leq 1, x \geq 0, y \geq 0\right\}$ is not convex.
(b) Find out the extreme points (if any) of the convex set

$$
X=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 16\right\}
$$

B.Sc./Part-III/Hons./(1+1+1) System/MTMH-IX/2021

(c) Obtain the optimal solution of the following transportation problem:

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	$\boldsymbol{a}_{\boldsymbol{i}}$
\mathbf{I}	4	1	3	4	4	60
$\mathbf{I I}$	2	3	2	2	3	35
$\mathbf{I I I}$	3	5	2	4	4	40
$\boldsymbol{b}_{\boldsymbol{j}}$	22	45	20	18	30	

3. (a) Solve the following L.P.P. by Big-M method:

$$
\begin{array}{ll}
\text { Maximize } & z=5 x_{1}-2 x_{2}+3 x_{3} \\
\text { Subject to } & 2 x_{1}+2 x_{2}-x_{3} \geq 2, \\
& 3 x_{1}-4 x_{2} \leq 3 \\
& x_{2}+3 x_{3} \leq 5, \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

(b) Solve the following assignment problem:

	\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}	\mathbf{T}
I	9	8	7	6	4
II	5	7	5	6	8
III	8	7	6	3	5
IV	8	5	4	9	3
V	6	7	6	8	5

GROUP-B

Answer all the questions

4. (a) If the intrinsic derivative of non-null vector \vec{A} along a curve is zero, show that the magnitude of \vec{A} is constant along the curve.
(b) Show that a second order covariant tensor can be expressed as a sum of a symmetric and a skew symmetric tensor.
5. If the metric is given by $d s^{2}=5\left(d x^{1}\right)^{2}+3\left(d x^{2}\right)^{2}+4\left(d x^{3}\right)^{2}-6 d x^{1} d x^{2}+4 d x^{2} d x^{3}$, then find the conjugate metric tensor.
6. (a) Prove that $A_{j}^{i j}=\frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{j}}\left(A^{i j} \sqrt{g}\right)+A^{j p}\left\{\begin{array}{c}i \\ j \\ j\end{array}\right\}$, where $A^{i j}$ is a tensor of type $(2,0)$.
(b) If $R_{i j, k}+R_{j k, i}+R_{k i, j}=0$, prove that the scalar curvature R is constant.
7. Surface of a sphere is a two dimensional Riemannian space. Compute the Christoffel symbols.
