

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours Part-III Examination, 2021

MATHEMATICS

PAPER-XI

Full Marks: 50

ASSIGNMENT

The figures in the margin indicate full marks. All symbols are of usual significance.

Answer all the questions	$10 \times 5 = 50$
--------------------------	--------------------

GROUP-A

1. (a) Let (X, d) be a metric space. Determine the constant k such that $d+k$ is also a metric on X.	2
(b) Show that in a discrete metric space every subset is open as well as closed.	3
(c) Find the boundary of the set $\{2 + \frac{1}{n} : n \in \mathbb{N}\}$ in \mathbb{R} with the usual metric.	
(d) Let (X, d) be a metric space. Prove that, for $x, y, z \in X$,	3
$ d(x, y) - d(z, w) \le d(x, z) + d(y, w)$	

2. (a) Let (\mathbb{R}, d) be the usual metric space. Show that the set of all integers is a complete metric space in (\mathbb{R}, d) .

(b) Let X denote the set of all sequences of real numbers. If $x = (x_n)$ and $y = (y_n)$ are 5 two elements of X, then show that

$$f(x, y) = \sum_{i=1}^{\infty} \frac{1}{2^{i}} \min\{|x_{n} - y_{n}|, 1\}$$

is a metric on X.

(c) Define a metric on \mathbb{R} such that $\frac{1}{n} \to 5$ but $-\frac{1}{n} \to 0$. 2

GROUP-B

- 3. (a) Find the image of the point $\frac{1-i}{2}$ on the Riemann sphere $x^2 + y^2 + (z \frac{1}{2})^2 = \frac{1}{4}$.
 - (b) Find the bilinear transformation which maps the points $z = \infty, 1, 0$ into 2 $w = 0, i, \infty$.

B.Sc./Part-III/Hons./(1+1+1) System/MTMH-XI/2021

(c) Let f be an analytic function in a domain D. If $\arg f(z)$ is constant for $z \in D$, 2 then show that f must be constant.

4

2

(d) Find the analytic function f(z), whose real part is

$$e^{-x}\{(x^2-y^2)\cos y+2xy\sin y\}$$

4. (a) For what values of z, $f(z) = \overline{z}$ satisfies the C-R equations?

- (b) Show that the stereographic projections of the points z and $-\frac{1}{z}$ are diametrically 3 opposite points on the Riemann sphere.
- (c) Show that f(z) = xy + iy is continuous everywhere but not analytic, where 2 = x + iy.

(d) Prove that
$$\frac{d}{dz}(\cos z) = -\sin z$$
 and $\frac{d}{dz}(\sin z) = \cos z$. 3

GROUP-C

5. (a) Prove that the groups $(\mathbb{R} - \{0\}, \times)$ and $(\mathbb{R}, +)$ are not isomorphic.	3
(b) Prove that a group G is abelian if $x^2 = 1$, $\forall x \in G$.	2
(c) Let (G, \circ) be a group and a mapping $\varphi: G \to G$ is defined by $\varphi(x) = x^{-1}$, $x \in G$. Prove that φ is a homomorphism iff G is commutative.	2
(d) Let G be a group in which $(ab)^3 = a^3b^3$ for all $a, b \in G$. Prove that $H = \{x^3 : x \in G\}$ is a normal subgroup of G.	3

-×-