

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours Part-III Examination, 2021

Mathematics

PAPER-XI

Full Marks: 50

ASSIGNMENT

The figures in the margin indicate full marks. All symbols are of usual significance.

Answer all the questions

GROUP-A

1. (a) Let (X, d) be a metric space. Determine the constant k such that $d+k$ is also a metric on X.
(b) Show that in a discrete metric space every subset is open as well as closed.3
(c) Find the boundary of the set $\left\{2+\frac{1}{n}: n \in \mathbb{N}\right\}$ in \mathbb{R} with the usual metric. 2
(d) Let (X, d) be a metric space. Prove that, for $x, y, z \in X$,

$$
|d(x, y)-d(z, w)| \leq d(x, z)+d(y, w)
$$

2. (a) Let (\mathbb{R}, d) be the usual metric space. Show that the set of all integers is a complete metric space in (\mathbb{R}, d).
(b) Let X denote the set of all sequences of real numbers. If $x=\left(x_{n}\right)$ and $y=\left(y_{n}\right)$ are two elements of X, then show that

$$
f(x, y)=\sum_{i=1}^{\infty} \frac{1}{2^{i}} \min \left\{\left|x_{n}-y_{n}\right|, 1\right\}
$$

is a metric on X.
(c) Define a metric on \mathbb{R} such that $\frac{1}{n} \rightarrow 5$ but $-\frac{1}{n} \rightarrow 0$.

GROUP-B

3. (a) Find the image of the point $\frac{1-i}{2}$ on the Riemann sphere $x^{2}+y^{2}+\left(z-\frac{1}{2}\right)^{2}=\frac{1}{4}$.
(b) Find the bilinear transformation which maps the points $z=\infty, 1,0$ into $w=0, i, \infty$.

B.Sc./Part-III/Hons./(1+1+1) System/MTMH-XI/2021

(c) Let f be an analytic function in a domain D. If $\arg f(z)$ is constant for $z \in D$, then show that f must be constant.
(d) Find the analytic function $f(z)$, whose real part is

$$
e^{-x}\left\{\left(x^{2}-y^{2}\right) \cos y+2 x y \sin y\right\}
$$

4. (a) For what values of $z, f(z)=\bar{z}$ satisfies the C-R equations?
(b) Show that the stereographic projections of the points z and $-\frac{1}{z}$ are diametrically opposite points on the Riemann sphere.
(c) Show that $f(z)=x y+i y$ is continuous everywhere but not analytic, where $z=x+i y$.
(d) Prove that $\frac{d}{d z}(\cos z)=-\sin z$ and $\frac{d}{d z}(\sin z)=\cos z$.

GROUP-C

5. (a) Prove that the groups ($\mathbb{R}-\{0\}, \times$) and $(\mathbb{R},+)$ are not isomorphic.
(b) Prove that a group G is abelian if $x^{2}=1, \forall x \in G$.
(c) Let (G, o) be a group and a mapping $\varphi: G \rightarrow G$ is defined by $\varphi(x)=x^{-1}, x \in G$.

Prove that φ is a homomorphism iff G is commutative.
(d) Let G be a group in which $(a b)^{3}=a^{3} b^{3}$ for all $a, b \in G$. Prove that $H=\left\{x^{3}: x \in G\right\}$ is a normal subgroup of G.
\qquad

