UNIVERSITY OF NORTH BENGAL

B.Sc. Honours Part-III Examination, 2021

Mathematics

PAPER-XII

THEORY OF PROBABILITY AND RIGID DYNAMICS
Full Marks: 50

Abstract

AssignMENT The figures in the margin indicate full marks. All symbols are of usual significance.

Answer all questions

GROUP-A

1. (a) A unbiased die is thrown 1200 times. Find the minimum value of the probability of getting 160 to 240 sixes.
(b) If the joint pdf of the random variable X, Y is

$$
f_{x, y}=\left\{\begin{array}{cl}
k(3 x+y) & , 0 \leq x<3,0 \leq y \leq 2 \\
0, & \text { elsewhere }
\end{array}\right.
$$

Find (i) $P(X+Y<2)$ (ii) The marginal distribution of X and Y. Investigate whether X and Y are independent.
2. (a) The pdf of a random variable X is symmetric about the origin. Prove that X and $-X$ have the same distribution.
(b) If (X, Y) is a standard normal variable in two dimensions and $\rho(X, Y)=\rho$, then prove that $\rho\left(X^{2}, Y^{2}\right)=\rho^{2}$.
3. For two arbitrary events A and B defined on the event space W, show that $P(B \mid A) \geq 1-\frac{P(A)}{P(B)}, \quad P(A) \neq 0$. Draw the probability distribution curve of uniform distribution defined by the pdf

$$
f_{x}(x)=\left\{\begin{array}{ccc}
\frac{1}{b-a} & , & a \leq x<b \\
0 & , & \text { otherwise }
\end{array}\right.
$$

4. If n coins are distributed among m beggars at random, what is the probability that one of the beggars will get exactly k coins?

B.Sc./Part-III/Hons./(1+1+1) System/MTMH-XII/2021

5. Find the constant k such that the function f given by

$$
f_{x}(x)=\left\{\begin{array}{ccc}
k|x| & , & -2 \leq x<2 \\
0 & , & \text { elsewhere }
\end{array}\right.
$$

is a possible pdf and find its distribution function and compute $P(X>1)$.

GROUP-B

6. Find the moment of inertia of a solid ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ about any principal axis.
7. A rod, of length $2 a$, is suspended by a string, of length l, attached to one end; if the string and rod revolved about the vertical with uniform angular velocity, and their inclination to the vertical be θ and ϕ respectively, show that

$$
\frac{3 l}{a}=\frac{(4 \tan \theta-3 \tan \phi) \sin \phi}{(\tan \phi-\tan \theta) \sin \theta}
$$

8. An elastic ball of mass m falls from a height h on a fixed horizontal plane and rebounds. Show that the loss of kinetic energy by the impact is $m g h\left(1-e^{2}\right)$, e being the coefficient of restitution.
\qquad
