

UNIVERSITY OF NORTH BENGAL

B.Sc. General Part-II Examination, 2021

STATISTICS

PAPER-V (OLD SYLLABUS)

Full Marks: 50

 $10 \times 1 = 10$

ASSIGNMENT

The figures in the margin indicate full marks. All symbols are of usual significance.

- 1. Answer *all* questions:
 - (a) What is efficient estimator?
 - (b) What are the sufficient conditions for consistency?
 - (c) What are the different optimum properties of good point estimators?
 - (d) What is Likelihood function?
 - (e) What is power of a test?
 - (f) What do you mean by interval estimation?
 - (g) What is level of significance?
 - (h) When a test is called unbiased?
 - (i) What is type-I error?
 - (j) What is unbiased estimator?

2. Answer *all* questions:

(a) A simple random sample (x_1, x_2, x_3, x_4) of size 4 is drawn from an infinite population with mean μ and sd δ . Given the two estimators of μ as follows:

 $T_1 = (x_1 + 2x_2 + 3x_3 + 4x_4)/10$ and $T_2 = (x_1 + x_2)/3 + (x_3 + x_4)/6$. Which one is better? Why?

(b) Prove that the sample variance s^2 is consistent estimate of the population variance σ^2 but it is not unbiased estimate of σ^2 .

 $6 \times 4 = 24$

- (c) On the basis of the random sample x_1, x_2, \dots, x_n of size *n* drawn from normal (μ, σ^2) population, find out the simultaneous estimation of μ and σ^2 .
- (d) In analysis of variance (ANOVA), prove that TSS = SSW + SSB.
- 3. Answer *all* questions:

 $8 \times 2 = 16$

- (a) (i) Define likelihood function stating it is a function of which variable or variables. Find the MLE of the parameter of a Binomial population.
 - (ii) Prove that $\sum_{i=1}^{n} \frac{(x_i \bar{x})^2}{n}$ is not an unbiased estimator of population variance σ^2 .
- (b) (i) Show that sample proportion defective is an unbiased estimator of population proportion defective.
 - (ii) What do you mean by χ^2 goodness of fit test? A dice was thrown 60 times and the frequencies of the different faces were observed to be the following:

Face :	1	2	3	4	5	6	Total
Frequency :	6	10	8	13	11	12	60
Test if the dice is	unbias	ed.					

-x-