

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours Part-II Examination, 2022

MATHEMATICS

PAPER-VII

MODERN ALG, LINEAR ALG, VECTOR ANALYSIS

NEW SYLLABUS

Time Allotted: 2 Hours

Full Marks: 50

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

(Marks:15)

Answer Question No. 1 and any one from the rest

1.	(a) Give an example of an abelian group which is not cyclic.	1
	(b) Find the order of the permutations	2
	$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 6 & 3 & 5 & 1 & 2 \end{pmatrix}$	
	(c) Examine if the ring of matrices $\left\{ \begin{pmatrix} a & b \\ 2b & a \end{pmatrix} : a, b \in \mathbb{R} \right\}$ is a field.	2
2.	(a) State and prove Lagrange's theorem.	5
	(b) Describe all even permutation on the set {1, 2, 3, 4}.	5
3.	(a) Define a field. Give an example of a ring which is not a field. Show that a field does not contain any divisor of zero.	ld 2+2+2
	(b) If a is a generator of a cyclic group, show that a^{-1} is also a generator of it.	4

GROUP-B

(Marks:15)

Answer Question No. 4 and any one from the rest

- 4. Answer any *two* questions:
 - (a) Let $T: \mathbb{R}^3 \to \mathbb{R}$; where T(1, 1, 1) = 3, T(0, 1, -2) = 1, T(0, 0, 1) = -2. Find $2\frac{1}{2}$ T(x, y, z).

B.Sc./Part-II/Hons./(1+1+1) System/MTMH-VII/2022

- (b) Test whether the mapping $T : \mathbb{R}^2 \to \mathbb{R}$ defined by T(x, y) = xy are linear or not.
- (c) Prove that for vectors $\vec{\alpha}, \vec{\beta}$ is an Euclidean space V, $\langle \vec{\alpha}, \vec{\beta} \rangle = 0$ iff

$$\|\vec{\alpha} + \vec{\beta}\| = \|\vec{\alpha} - \vec{\beta}\|$$

- 5. (a) A linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ is defined by T(x, y, z) = (x y, x + 2y, y + 3z). Show that *T* is non-singular and determine T^{-1} .
 - (b) State and prove Bessel's inequality.
- 6. (a) A linear transformation $T: V_n(F) \to V_n(F)$ is non-singular iff for every set $\{v_1, v_2, \dots, v_n\}$ linearly independent in V, the set $\{T(v_1), T(v_2), \dots, T(v_n)\}$ is linearly independent in V.
 - (b) Let *P* be a subspace of a finite dimensional Euclidean space *V*. Then prove that $V = P \oplus P^{\perp}$.

GROUP-C

(Marks:20)

Answer Question No. 7 and any three from the rest

7.	(a)	If $u = x^3 + 3yz^2$, then find ∇u .	1
	(b)	Show that $\vec{\nabla} f(x, y, z)$ is both an irrational and solenoidal vector, if $f(x, y, z)$ satisfies $\vec{\nabla}^2 f(x, y, z) = 0$.	2
	(c)	Find the directional derivative of $f = xy + yz + zx$ in the direction of the vector $\hat{i} + 2\hat{j} + 2\hat{k}$ at the point (1, 2, 0).	2
8.		Show that the vector field $\vec{f} = (x^2 - yz)\hat{i} + (y^2 - zx)\hat{j} + (z^2 - xy)\hat{k}$ is irrotational. Find $\phi(x, y, z)$ such that $\vec{f} = \vec{\nabla}\phi$.	5
9.		Evaluate the surface integral $\int_{S} (yz\hat{i} + zx\hat{j} + xy\hat{k}) dS$; where <i>S</i> is the surface of the sphere $x^2 + y^2 + z^2 = 1$ in the first octant.	5
10.		The necessary and sufficient condition that the vector field defined by the vector point function \vec{F} with continuous derivative be conservative is that $\vec{\nabla} \times \vec{F} = 0$.	5
11.		Verify the divergence theorem for the vector function $\vec{F} = 2xz\vec{i} + y^2\vec{j} + yz\vec{k}$ taken over the surface of the curve bounded by $x = 0$, $x = 1$, $y = 0$, $y = 1$, z = 0, $z = 1$.	5
12.		Verify Green's theorem in a plane for $\oint_C \{(x^2 + xy) dx + x dy\}$, where C is the	5
		curve enclosing the region bounded by $y = x^2$ and $y = x$.	

×.

5

5

 $2\frac{1}{2}$

 $2\frac{1}{2}$

5