UNIVERSITY OF NORTH BENGAL

B.Sc. Honours Part-II Examination, 2022

Mathematics

Paper-VII

Modern Alg, Linear Alg, Vector Analysis
 New Syllabus

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A
 (Marks:15)

Answer Question No. 1 and any one from the rest

1. (a) Give an example of an abelian group which is not cyclic. 1
(b) Find the order of the permutations

$$
\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
4 & 6 & 3 & 5 & 1 & 2
\end{array}\right)
$$

(c) Examine if the ring of matrices $\left\{\left(\begin{array}{cc}a & b \\ 2 b & a\end{array}\right): a, b \in \mathbb{R}\right\}$ is a field.
2. (a) State and prove Lagrange's theorem.
(b) Describe all even permutation on the set $\{1,2,3,4\}$.
3. (a) Define a field. Give an example of a ring which is not a field. Show that a field does not contain any divisor of zero.
(b) If a is a generator of a cyclic group, show that a^{-1} is also a generator of it.

GROUP-B

(Marks:15)

Answer Question No. 4 and any one from the rest

4. Answer any two questions:
(a) Let $T: R^{3} \rightarrow R$; where $T(1,1,1)=3, T(0,1,-2)=1, T(0,0,1)=-2$. Find $T(x, y, z)$.

B.Sc./Part-II/Hons./(1+1+1) System/MTMH-VII/2022

(b) Test whether the mapping $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $T(x, y)=x y$ are linear or not.
(c) Prove that for vectors $\vec{\alpha}, \vec{\beta}$ is an Euclidean space $V,\langle\vec{\alpha}, \vec{\beta}\rangle=0$ iff

$$
\|\vec{\alpha}+\vec{\beta}\|=\|\vec{\alpha}-\vec{\beta}\|
$$

5. (a) A linear mapping $T: R^{3} \rightarrow R^{3}$ is defined by $T(x, y, z)=(x-y, x+2 y, y+3 z)$. Show that T is non-singular and determine T^{-1}.
(b) State and prove Bessel's inequality.
6. (a) A linear transformation $T: V_{n}(F) \rightarrow V_{n}(F)$ is non-singular iff for every set $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ linearly independent in V, the set $\left\{T\left(v_{1}\right), T\left(v_{2}\right), \cdots, T\left(v_{n}\right)\right\}$ is linearly independent in V.
(b) Let P be a subspace of a finite dimensional Euclidean space V. Then prove that $V=P \oplus P^{\perp}$.

GROUP-C

(Marks:20)

Answer Question No. 7 and any three from the rest

7. (a) If $u=x^{3}+3 y z^{2}$, then find ∇u.
(b) Show that $\vec{\nabla} f(x, y, z)$ is both an irrational and solenoidal vector, if $f(x, y, z)$ satisfies $\vec{\nabla}^{2} f(x, y, z)=0$.
(c) Find the directional derivative of $f=x y+y z+z x$ in the direction of the vector $\hat{i}+2 \hat{j}+2 \hat{k}$ at the point $(1,2,0)$.
8. Show that the vector field $\vec{f}=\left(x^{2}-y z\right) \hat{i}+\left(y^{2}-z x\right) \hat{j}+\left(z^{2}-x y\right) \hat{k}$ is irrotational. Find $\phi(x, y, z)$ such that $\vec{f}=\vec{\nabla} \phi$.
9. Evaluate the surface integral $\int_{S}(y z \hat{i}+z x \hat{j}+x y \hat{k}) d S$; where S is the surface of the sphere $x^{2}+y^{2}+z^{2}=1$ in the first octant.
10. The necessary and sufficient condition that the vector field defined by the vector point function \vec{F} with continuous derivative be conservative is that $\vec{\nabla} \times \vec{F}=0$.
11. Verify the divergence theorem for the vector function $\vec{F}=2 x z \vec{i}+y^{2} \vec{j}+y z \vec{k}$ taken over the surface of the curve bounded by $x=0, x=1, y=0, y=1$, $z=0, \quad z=1$.
12. Verify Green's theorem in a plane for $\oint_{C}\left\{\left(x^{2}+x y\right) d x+x d y\right\}$, where C is the curve enclosing the region bounded by $y=x^{2}$ and $y=x$.
