UNIVERSITY OF NORTH BENGAL

B.Sc. Honours Part-II Examination, 2022

MATHEMATICS

Paper-VIII

GEOMETRY, DIFFERENTIAL EQUATION

New SylLabus

Time Allotted: 2 Hours
Full Marks: 50
The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

1. Answer the following questions:
(a) Find the direction cosines of the line, which is equally inclined to the axes.
(b) Find the equation of the sphere passing through the points $(2,0,0),(0,2,0)$, $(0,0,2)$ and having the least possible radius.
(c) Determine the value of K so that the lines

$$
\frac{x-1}{2}=\frac{y-4}{1}=\frac{z-5}{2} \quad \text { and } \quad \frac{x-2}{-1}=\frac{y-8}{K}=\frac{z-11}{4}
$$

may intersect.
2. Answer any two of the following questions:
(a) Find the equation of the projection of the line $\frac{x-1}{2}=\frac{y+1}{-1}=\frac{z-3}{4}$ on the plane $x+2 y+z=6$.
(b) Find the equation of the sphere for which the circle $x^{2}+y^{2}+z^{2}+7 y-2 z+2=0$, $2 x+3 y+4 z-8=0$ is a great circle.
(c) The plane $l x+m y=0$ is rotated about its line of intersection with the plane $z=0$ through an angle α. Prove that its equation in its new position is

$$
l x+m y \pm z \sqrt{l^{2}+m^{2}} \tan \alpha=0
$$

3. Answer any two of the following questions:
(a) Show that the condition that the plane $a x+b y+c z=0$ may cut the cone $y z+z x+x y=0$ in perpendicular lines is $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0$.

B.Sc./Part-II/Hons./(1+1+1) System/MTMH-VIII/2022

(b) Show that the equation to the plane containing the line $\frac{y}{b}+\frac{z}{c}=1, x=0$ and parallel to the line $\frac{x}{a}-\frac{z}{c}=1, y=0$ is $\frac{x}{a}-\frac{y}{b}-\frac{z}{c}+1=0$ and if $2 d$ is the s.d., prove that $\frac{1}{d^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}$.
(c) Show that $2 x^{2}+5 y^{2}+5 z^{2}+4 x y+2 y z-4 z x+16 x+22 y-10 z-18=0$ is the equation of the cylinder which passes through the point $(3,-1,-1)$ and has the axis $\frac{x-1}{2}=\frac{y+3}{-1}=\frac{z-2}{1}$.

GROUP-B

4. Answer the following questions:
(a) Find the order and degree of the partial differential equation

$$
y\left\{\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}\right\}=z \frac{\partial z}{\partial y}
$$

(b) Form the partial differential equation by elimination of ϕ from

$$
l x+m y+n z=\phi\left(x^{2}+y^{2}+z^{2}\right)
$$

(c) Show that $x=0$ is an ordinary point of $\left(x^{2}-1\right) y^{\prime \prime}+x y^{\prime}-y=0$, but $x=1$ is a regular singular point.
5. Answer any two of the following questions:
(a) Reduce the equation

$$
\frac{d^{2} y}{d x^{2}}-4 x \frac{d y}{d x}+4 x^{2} y=e^{x^{2}} \text { to its normal form and hence solve it. }
$$

(b) Solve: $D x-y=0 ;(D-1) x-(D+1) y=0$, where, $D=\frac{d}{d t}$.
(c) Find a complete integral of $z p q=p+q, \quad p=\frac{\partial z}{\partial x}, \quad q=\frac{\partial z}{\partial y}$.
6. Answer any two of the following questions:
(a) Solve $\frac{d^{2} y}{d x^{2}}+a^{2} y=\sec a x$, by method of variation of parameters.
(b) Find the series solution of the differential equation

$$
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0 \quad \text { about } \quad x=0
$$

(c) Find the eigen values and eigen functions of

$$
\frac{d}{d x}\left(x \frac{d y}{d x}\right)+\frac{\lambda}{x} y=0(\lambda>0) \quad ; \quad y(1)=0 \quad, \quad y\left(e^{\pi}\right)=0
$$

