UNIVERSITY OF NORTH BENGAL

B.Sc. Honours Part-III Examination, 2022

Mathematics

PAPER-IX

Linear Programming and Optimization, Tensor Algebra and Analysis New Syllabus

Time Allotted: 2 Hours

Full Marks: 50

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

Answer Question No. 1 and any two from the rest

1. Answer any three questions from the following:
(a) Show that the set $X=\{x:|x| \leq 2\}$ is a convex set in E.
(b) Find dual of the following L.P.P.:

Maximize $Z=4 x_{1}+3 x_{2}$
Subject to, $x_{1}+x_{2} \leq 5$
$2 x_{1}-3 x_{2} \leq 2$

$$
x_{1}, x_{2} \geq 0
$$

(c) Determine the extreme points of the set $S=\left\{\left(x_{1}, x_{2}\right): 0 \leq x_{1} \leq 2,1 \leq x_{2} \leq 3\right\}$.
(d) Find graphically the feasible space, if any, for the following problem:

$$
\begin{aligned}
& 2 x_{1}+3 x_{2} \leq 6 \\
& 2 x_{1}+3 x_{2} \geq 6 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

(e) In the following equations, find the basic solution with x_{3} as the non-basic variable:

$$
\begin{aligned}
& x_{1}+4 x_{2}-x_{3}=3 \\
& 5 x_{1}+2 x_{2}+3 x_{3}=4
\end{aligned}
$$

2. (a) Use duality to find the optimal solution, if any, of the L.P.P.:

$$
\begin{array}{cl}
\operatorname{Minimize} & Z=10 x_{1}+6 x_{2}+2 x_{3} \\
\text { Subject to, } & -x_{1}+x_{2}+x_{3} \geq 1 \\
& 3 x_{1}+x_{2}-x_{3} \geq 2 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

B.Sc./Part-III/Hons./(1+1+1) System/MTMH-IX/2022

(b) Show that, the number of basic variables in a transportation problem is at most ($m+n-1$).
3. (a) Use two-phase method to solve the following L.P.P.:

$$
\begin{array}{ll}
\text { Maximize } & Z=3 x_{1}-x_{2} \\
\text { Subject to, } & 2 x_{1}+x_{2} \geq 2 \\
& x_{1}+3 x_{2} \leq 2 \\
& x_{2} \leq 4 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

(b) Solve graphically the following L.P.P.:

$$
\begin{array}{ll}
\text { Minimize } & Z=-x_{1}+2 x_{2} \\
\text { Subject to, } & -x_{1}+3 x_{2} \leq 10 \\
& x_{1}+x_{2} \leq 6 \\
& x_{1}-x_{2} \leq 2 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

4. (a) Prove that $x_{1}=2, x_{2}=3, x_{3}=0$ is a feasible solution but not a basic feasible solution of the set of equations.

$$
\begin{aligned}
& 3 x_{1}+5 x_{2}-7 x_{3}=21 \\
& 6 x_{1}+10 x_{2}+3 x_{3}=42
\end{aligned}
$$

Find the basic feasible solution of the above set of equations.
(b) Find the dual of the following L.P.P.:

$$
\begin{array}{ll}
\text { Maximize } & Z=2 x_{1}+3 x_{2}+x_{3} \\
\text { Subject to, } & 4 x_{1}+3 x_{2}+x_{3}=6 \\
& x_{1}+2 x_{2}+5 x_{3}=4 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

5. (a) Solve the assignment problem with the following cost matrix:

	M_{1}	M_{2}	M_{3}	M_{4}	M_{5}
I	9	8	7	6	4
II	5	7	5	6	8
III	8	7	6	3	5
IV	8	5	4	9	3
V	6	7	6	8	5

B.Sc./Part-III/Hons./(1+1+1) System/MTMH-IX/2022

(b) Solve the following travelling salesman problem:

	A		B	C
D				
A	∞	12	10	15
B	16	∞	11	13
C	17	18	∞	20
D	13	11	18	∞

GROUP-B

Answer Question No. 6 and any three from the rest

6. (a) Define covariant and contravariant vector.
(b) Prove that $\delta_{j}^{i} \delta_{k}^{j}=\delta_{k}^{i}$.
(c) If $A_{i j}$ is a symmetric tensor and $B_{i j}=A_{j i}$, show that $B_{i j}$ is a symmetric tensor.
7. If $a_{i j} u^{i} u^{j}$ is an invariant, where u^{i} is an arbitrary contravariant vector, $a_{i j}$ is a symmetric tensor and $u^{i}=A^{i}+B^{i}$, then show that $a_{i j} A^{i} B^{j}$ is an invariant.
8. If the relation $b^{i j} u_{i} u_{j}=0$ holds for any arbitrary covariant vector u_{i}, prove that $b^{i j}+b^{j i}=0$.
9. In a 4-dimensional space-time $(x, y, z, c t)$, the line element is

$$
d s^{2}=-d x^{2}-d y^{2}-d z^{2}+c^{2} d t^{2}
$$

then show that $(\sqrt{2}, 0,0, \sqrt{3} / c)$ is a unit vector.
10. If A_{i} is a covariant vector, prove that $\left(\frac{\partial A_{i}}{\partial x^{j}}-\frac{\partial A_{j}}{\partial x^{i}}\right)$ is a covariant tensor of rank 2 .
11. Prove that, $A_{, j}^{i j}=\frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{j}}\left(A^{i j} \sqrt{g}\right)+A^{j p}\left\{\begin{array}{c}i \\ j \quad p\end{array}\right\}$, where $A^{i j}$ is a tensor of type $(2,0)$, symbols have their usual meaning.
\qquad

