

UNIVERSITY OF NORTH BENGAL B.Sc. Honours Part-III Examination, 2022

MATHEMATICS

PAPER-IX

LINEAR PROGRAMMING AND OPTIMIZATION, TENSOR ALGEBRA AND ANALYSIS

NEW SYLLABUS

Time Allotted: 2 Hours

Full Marks: 50

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

Answer Question No. 1 and any two from the rest

1.	Answer any <i>three</i> questions from the following:				
	(a) Show that the set $X = \{x : x \le 2\}$ is a convex set in <i>E</i> .		2		
	(b) Find dual of the following L.P.P.:			2	
		Maximize	$Z = 4x_1 + 3x_2$		
		Subject to,	$x_1 + x_2 \le 5$		
			$2x_1 - 3x_2 \le 2$		
			$x_1, x_2 \ge 0$		
	(c)	Determine the ex	treme points of the set $S = \{(x_1, x_2): 0 \le x_1 \le 2, 1 \le x_2 \le 3\}$.	2	
	(d) Find graphically the feasible space, if any, for the following problem:				
			$2x_1 + 3x_2 \le 6$		
			$2x_1 + 3x_2 \ge 6$		
			$x_1, x_2 \ge 0$		
	(e)	In the following variable:	equations, find the basic solution with x_3 as the non-basic	2	
			$x_1 + 4x_2 - x_3 = 3$		
			$5x_1 + 2x_2 + 3x_3 = 4$		
2.	(a) Use duality to find the optimal solution, if any, of the L.P.P.:				
	Minimize $Z = 10x_1 + 6x_2 + 2x_3$ Subject to, $-x_1 + x_2 + x_3 \ge 1$				
		3	$3x_1 + x_2 - x_2 \ge 2$		

 $x_1, x_2, x_3 \ge 0$

B.Sc./Part-III/Hons./(1+1+1) System/MTMH-IX/2022

- (b) Show that, the number of basic variables in a transportation problem is at most (m+n-1).
- 3. (a) Use two-phase method to solve the following L.P.P.:

Maximize
$$Z = 3x_1 - x_2$$

Subject to, $2x_1 + x_2 \ge 2$
 $x_1 + 3x_2 \le 2$
 $x_2 \le 4$
 $x_1, x_2 \ge 0$

(b) Solve graphically the following L.P.P.:

Minimize
$$Z = -x_1 + 2x_2$$

Subject to,
$$-x_1 + 3x_2 \le 10$$
$$x_1 + x_2 \le 6$$
$$x_1 - x_2 \le 2$$
$$x_1, x_2 \ge 0$$

4. (a) Prove that $x_1 = 2$, $x_2 = 3$, $x_3 = 0$ is a feasible solution but not a basic feasible 4+4 solution of the set of equations.

$$3x_1 + 5x_2 - 7x_3 = 21$$

$$6x_1 + 10x_2 + 3x_3 = 42$$

Find the basic feasible solution of the above set of equations.

(b) Find the dual of the following L.P.P.:

Maximize
$$Z = 2x_1 + 3x_2 + x_3$$

Subject to, $4x_1 + 3x_2 + x_3 = 6$
 $x_1 + 2x_2 + 5x_3 = 4$
 $x_1, x_2, x_3 \ge 0$

5. (a) Solve the assignment problem with the following cost matrix:

	M_1	M_2	M_3	M_4	M_5
Ι	9	8	7	6	4
II	5	7	5	6	8
III	8	7	6	3	5
IV	8	5	4	9	3
V	6	7	6	8	5

6

4

6

6

6

B.Sc./Part-III/Hons./(1+1+1) System/MTMH-IX/2022

(b) Solve the following travelling salesman problem:

	A	В	С	D
A	8	12	10	15
В	16	8	11	13
С	17	18	8	20
D	13	11	18	8

GROUP-B

Answer Question No. 6 and any three from the rest

6.	(a) Define covariant and contravariant vector.	1
	(b) Prove that $\delta_j^i \delta_k^j = \delta_k^i$.	2
	(c) If A_{ij} is a symmetric tensor and $B_{ij} = A_{ji}$, show that B_{ij} is a symmetric tensor.	2

- 7. If $a_{ij} u^i u^j$ is an invariant, where u^i is an arbitrary contravariant vector, a_{ij} is a 5 symmetric tensor and $u^i = A^i + B^i$, then show that $a_{ij}A^iB^j$ is an invariant.
- 8. If the relation $b^{ij}u_iu_j = 0$ holds for any arbitrary covariant vector u_i , prove that $b^{ij} + b^{ji} = 0$.

9. In a 4-dimensional space-time
$$(x, y, z, ct)$$
, the line element is

$$ds^{2} = -dx^{2} - dy^{2} - dz^{2} + c^{2}dt^{2}$$
5

then show that $(\sqrt{2}, 0, 0, \sqrt{3}/c)$ is a unit vector.

- 10. If A_i is a covariant vector, prove that $\left(\frac{\partial A_i}{\partial x^j} \frac{\partial A_j}{\partial x^i}\right)$ is a covariant tensor of rank 2. 5
- 11. Prove that, $A_{jj}^{ij} = \frac{1}{\sqrt{g}} \frac{\partial}{\partial x^j} (A^{ij}\sqrt{g}) + A^{jp} \begin{cases} i \\ j p \end{cases}$, where A^{ij} is a tensor of type 5 (2, 0), symbols have their usual meaning.

×

5