उत्तर बन्ग समानो मन्त्रः समितिः समानीं

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours Part-III Examination, 2022

MATHEMATICS

PAPER-X
Real Analysis, Integral Calculus

New Syllabus

Time Allotted: 2 Hours
Full Marks: 50
The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

Answer Question No. 1 and any two from the rest

1. (a) Find the radius of convergence of the power series

$$
x+\frac{1!}{2^{2}} x^{2}+\frac{2!}{3^{3}} x^{3}+\frac{3!}{4^{4}} x^{4}+\cdots \cdots
$$

(b) State Cauchy-Hadamard theorem.
(c) Prove that the series $\sum \frac{1}{n^{3}+n^{4} x^{2}}$ is uniformly convergent for all real x.
2. (a) State and prove Heine-Borel theorem.
(b) If a series of uniformly continuous functions is uniformly convergent, show that the limit function is also uniformly continuous.
3. (a) A function f is defined on \mathbb{R} by

$$
f(x)=\left\{\begin{array}{ccc}
-x^{2} & , & x \leq 0 \\
5 x-4 & , & 0<x \leq 1 \\
4 x^{2}-3 x & , & 1<x \leq 2 \\
3 x+4, & x \geq 2
\end{array}\right.
$$

Examine f for continuity at $x=0,1,2$. Also discuss the kind of discontinuity, if any.
(b) The space (\mathbb{R}, d) is not compact, where \mathbb{R} is the set of real numbers and d is the usual metric.
(c) State Cantor's intersection theorem.
4. (a) Use Lagrange's method of undetermined multipliers to find the length of the greatest chord of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ passing through the origin.
(b) Show that the sequence $\left\{f_{n}\right\}$, converges pointwise to zero on $[0,1]$, where $f_{n}(x)=n x e^{-n x^{2}}, n=1,2,3, \cdots \cdots$
5. (a) Show that closed subset of compact metric space is compact.
(b) Show that f is continuous for $x>0$, where $f(x)=e^{-x}+2 e^{-2 x}+3 e^{-3 x}+\cdots \cdots$

Also evaluate $\int_{\log 2}^{\log 3} f(x) d x$.

GROUP-B

Answer Question No. 6 and any two from the rest

6. (a) Change the order of integration of the integral $\int_{0}^{2} \int_{-y}^{\sqrt{y}}(1+x+y) d x d y$.
(b) Test the convergence of the integral $\int_{0}^{\infty} \sin x^{2} d x$.
(c) Prove that $\Gamma\left(\frac{1+n}{2}\right) \Gamma\left(\frac{1-n}{2}\right)=\pi \sec \frac{n \pi}{2} \quad,-1<n<1$.
7. (a) Show that the integral $\int_{0}^{\pi / 2} \log \sin x d x$ is convergent and hence evaluate it.
(b) Examine the convergence of
(i) $\int_{0}^{1} \frac{d x}{x^{2}}$,
(ii) $\int_{0}^{1} \frac{d x}{\sqrt{1-x}}$
8. (a) If f is bounded and integrable on $[-\pi, \pi]$ and a_{n}, b_{n} are its Fourier coefficients then prove that $\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)$ converges.
(b) Compute the surface area of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.
9. (a) Expand $\left(x+x^{2}\right)$ in Fourier series in $-\pi<x<\pi$ and deduce that

$$
\begin{equation*}
\frac{\pi^{2}}{4}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots \cdots \tag{4}
\end{equation*}
$$

(b) Discuss the convergence of $\int_{0}^{\infty} \frac{x^{\alpha}}{1+x^{\beta} \sin ^{2} x} d x$.
10.(a) Using the method of differentiation under the integral sign (arbitrary parameter),
show that $\int_{0}^{\pi / 2} \log \left(\frac{a+b \sin \theta}{a-b \sin \theta}\right) \frac{d \theta}{\sin \theta}=\pi \sin ^{-1}\left(\frac{b}{a}\right), a>b \geq 0$.
(b) If R is the region in the $x y$ plane bounded by the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$, prove that $\iint \sqrt{x^{2}+y^{2}} d x d y=\frac{14}{3} \pi$.

