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UNIVERSITY OF NORTH BENGAL 

B.Sc. Honours Part-III Examination, 2022 
MATHEMATICS 

PAPER-X 
REAL ANALYSIS, INTEGRAL CALCULUS 

NEW SYLLABUS 
Time Allotted: 2 Hours Full Marks: 50 

The figures in the margin indicate full marks. 
All symbols are of usual significance. 

 GROUP-A 
 Answer Question No. 1 and any two from the rest 

1.  (a) Find the radius of convergence of the power series 
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(b) State Cauchy-Hadamard theorem. 1

(c) Prove that the series ∑ 243
1

xnn
 is uniformly convergent for all real x. 
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2.  (a) State and prove Heine-Borel theorem. 6

(b) If a series of uniformly continuous functions is uniformly convergent, show that the 
limit function is also uniformly continuous. 
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3.  (a) A function  f  is defined on ℝ by 
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Examine  f  for continuity at 2,1,0x . Also discuss the kind of discontinuity, if 
any. 

6

(b) The space (ℝ, d) is not compact, where ℝ is the set of real numbers and d is the 
usual metric. 
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(c) State Cantor’s intersection theorem. 2
  

4.  (a) Use Lagrange’s method of undetermined multipliers to find the length of the 

greatest chord of the ellipsoid 12
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x  passing through the origin. 
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(b) Show that the sequence }{ nf , converges pointwise to zero on ]1,0[ , where 
2
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5.  (a) Show that closed subset of compact metric space is compact. 5

(b) Show that  f  is continuous for 0x , where LLxxx eeexf 32 32)(   

Also evaluate ∫
3log

2log

)( dxxf . 
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 GROUP-B 
 Answer Question No. 6 and any two from the rest 

6.  (a) Change the order of integration of the integral ∫ ∫
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(b) Test the convergence of the integral ∫
0

2sin dxx . 2
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7.  (a) Show that the integral ∫
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sinlog dxx  is convergent and hence evaluate it. 6

(b) Examine the convergence of 
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8.  (a) If f is bounded and integrable on ],[  and na , nb  are its Fourier coefficients 

then prove that ∑
1
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nn ba  converges. 
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(b) Compute the surface area of the sphere 2222 azyx . 4
  

9.  (a) Expand )( 2xx  in Fourier series in x  and deduce that  
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(b) Discuss the convergence of ∫
0

2sin1
dx
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x . 4

  
10.(a) Using the method of differentiation under the integral sign (arbitrary parameter), 

show that ∫ ⎟
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(b) If R is the region in the xy plane bounded by the circles 122 yx  and 

422 yx , prove that 
3

1422∫∫ dydxyx . 
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