

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours Part-III Examination, 2022

MATHEMATICS

PAPER-X

REAL ANALYSIS, INTEGRAL CALCULUS

NEW SYLLABUS

Time Allotted: 2 Hours

Full Marks: 50

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

Answer Question No. 1 and any two from the rest

1.	(a)	Find the radius of convergence of the power series $x + \frac{1!}{2^2}x^2 + \frac{2!}{3^3}x^3 + \frac{3!}{4^4}x^4 + \cdots$	2
	(b)	State Cauchy-Hadamard theorem.	1
	(c)	Prove that the series $\sum \frac{1}{n^3 + n^4 x^2}$ is uniformly convergent for all real <i>x</i> .	2
2.	(a)	State and prove Heine-Borel theorem.	6
	(b)	If a series of uniformly continuous functions is uniformly convergent, show that the limit function is also uniformly continuous.	4
3.	(a)	A function f is defined on \mathbb{R} by $f(x) = \begin{cases} -x^2 , & x \le 0 \\ 5x - 4 , & 0 < x \le 1 \\ 4x^2 - 3x , & 1 < x \le 2 \\ 3x + 4 , & x \ge 2 \end{cases}$	6
		Examine f for continuity at $x = 0, 1, 2$. Also discuss the kind of discontinuity, if any.	
	(b)	The space (\mathbb{R}, d) is not compact, where \mathbb{R} is the set of real numbers and d is the usual metric.	2
	(c)	State Cantor's intersection theorem.	2
4.	(a)	Use Lagrange's method of undetermined multipliers to find the length of the greatest chord of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ passing through the origin.	6
	(b)	Show that the sequence $\{f_n\}$, converges pointwise to zero on [0,1], where $f_n(x) = nxe^{-nx^2}$, $n = 1, 2, 3, \dots$	4

1

B.Sc./Part-III/Hons./(1+1+1) System/MTMH-X/2022

- 5. (a) Show that closed subset of compact metric space is compact.
 - (b) Show that f is continuous for x > 0, where $f(x) = e^{-x} + 2e^{-2x} + 3e^{-3x} + \dots$ 5 Also evaluate $\int_{\log 2}^{\log 3} f(x) dx$.

5

2+2

GROUP-B

Answer Question No. 6 and any two from the rest

6. (a) Change the order of integration of the integral
$$\int_{0}^{2} \int_{-y}^{\sqrt{y}} (1+x+y) \, dx \, dy \, . \qquad 2$$

(b) Test the convergence of the integral $\int_{0}^{\infty} \sin x^2 dx$. 2

(c) Prove that
$$\Gamma\left(\frac{1+n}{2}\right)\Gamma\left(\frac{1-n}{2}\right) = \pi \sec \frac{n\pi}{2}$$
, $-1 < n < 1$.

7. (a) Show that the integral $\int_{0}^{x/2} \log \sin x \, dx$ is convergent and hence evaluate it. 6

(b) Examine the convergence of (i) $\int_{0}^{1} \frac{dx}{x^{2}}$, (ii) $\int_{0}^{1} \frac{dx}{\sqrt{1-x}}$

8. (a) If f is bounded and integrable on $[-\pi, \pi]$ and a_n , b_n are its Fourier coefficients 6 then prove that $\sum_{n=1}^{\infty} (a_n^2 + b_n^2)$ converges.

(b) Compute the surface area of the sphere $x^2 + y^2 + z^2 = a^2$. 4

9. (a) Expand $(x + x^2)$ in Fourier series in $-\pi < x < \pi$ and deduce that $\frac{\pi^2}{4} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$ 6

(b) Discuss the convergence of
$$\int_{0}^{\infty} \frac{x^{\alpha}}{1 + x^{\beta} \sin^{2} x} dx.$$
 4

10.(a) Using the method of differentiation under the integral sign (arbitrary parameter), 6
show that
$$\int_{0}^{\pi/2} \log \left(\frac{a+b\sin\theta}{a-b\sin\theta} \right) \frac{d\theta}{\sin\theta} = \pi \sin^{-1} \left(\frac{b}{a} \right), \quad a > b \ge 0.$$

(b) If *R* is the region in the *xy* plane bounded by the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$, prove that $\iint \sqrt{x^2 + y^2} \, dx \, dy = \frac{14}{3}\pi$.