UNIVERSITY OF NORTH BENGAL

B.Sc. Honours Part-III Examination, 2022

MATHEMATICS

PAPER-XI

Metric Space, Complex analysis, Algebra
 New Syllabus

Time Allotted: 2 Hours
Full Marks: 50
The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A (Full marks-20)

Answer Question number 1 and any three from the rest

1. (a) Give an example of an incomplete metric space.

1
(b) Let (X, d) be a metric space. Find the value of k such that d_{1} is a metric on 2 X, where $d_{1}(x, y)=d(x, y)+k ; \forall x, y \in X$.
(c) In the Euclidean line, let $A=(0,1], B=(1,2)$. Find $\inf (A \cup B)$.
2. Let $X=\left\{1, \frac{1}{2}, \frac{1}{3}, \cdots \cdots, \frac{1}{n}, \cdots \cdots\right\}$ and ' d ' is the usual metric defined on X.

Let $A=\left\{1, \frac{1}{3}, \frac{1}{5}, \cdots \cdots, \frac{1}{2 n-1}, \cdots \cdots\right\} \quad$ and $\quad B=\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \cdots \cdots\right\}$. Find distance between A and B.
3. Prove that every open sphere is neighbourhood of each of its points.
4. Prove that every Cauchy sequence in a metric space is convergent if and only if it has a convergent subsequence.
5. Prove that in a metric space (X, d), a subset A of X is closed iff A^{c} is open.
6. Show that $\left(\mathbb{R}^{2}, d\right)$ is a metric space where $d(x, y)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}$ $\forall x, y \in \mathbb{R}^{2}, x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right)$.

GROUP-B (Full marks-20)

Answer Question number 7 and any three from the rest

7. (a) Show that the inverse of bilinear transformation is a bilinear transformation.
(b) Is the function $f(z)=x y+i y$ analytic everywhere? 2
(c) Define cross ratio of four points z_{1}, z_{2}, z_{3} and z_{4}.
8. Let f be analytic function in a region G. If any one of $\operatorname{Re}(f), \operatorname{Im}(f),|f|$ is constant on G, then prove that f is constant on G.
9. Define stereographic projection. What is the image of the point $z=-\frac{1}{2}+i \frac{1}{2}$ on the sphere $x^{2}+y^{2}+z^{2}=1$ under stereographic projection?
10. Show that the composition of two bilinear transformation is a bilinear transformation.
11. Determine $f(z)=u+i v$ by obtaining a conjugate of a given harmonic function $u(x, y)=y^{3}-3 x^{2} y$.
12. Let $f(z)=|z|^{2}$. Show that the derivative of $f(z)$ exists only at the origin.

GROUP-C

Answer any two questions

13. Prove that any two cyclic groups are isomorphic.
14. Let $G=(\mathbb{R},+), G^{\prime}=\{z \in \mathbb{C}:|z|=1\}$ and $\phi=G \rightarrow G^{\prime}$ is defined by

$$
\phi(x)=\cos 2 \pi x+i \sin 2 \pi x, \quad x \in \mathbb{R}
$$

Prove that ϕ is a homomorphism. Determine $\operatorname{ker} \phi$.
15. A subgroup H of a group G is normal iff $x H x^{-1}=H, \forall x \in G$.
16. Suppose M and H are normal subgroups of a group G such that $M \cap H=\{e\}$. Then show that every element M commutes with every element of H i.e., $m h=h m$, where $m \in M$ and $h \in H$.

