

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours Part-III Examination, 2022

MATHEMATICS

PAPER-XI

METRIC SPACE, COMPLEX ANALYSIS, ALGEBRA

NEW SYLLABUS

Time Allotted: 2 Hours

Full Marks: 50

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A (Full marks-20)

Answer Question number 1 and any *three* from the rest

1. (a) Give an example of an incomplete metric space.	1
(b) Let (X, d) be a metric space. Find the value of k such that d_1 is a metric on	2
X, where $d_1(x, y) = d(x, y) + k$; $\forall x, y \in X$.	
(c) In the Euclidean line, let $A = (0, 1]$, $B = (1, 2)$. Find $\inf (A \cup B)$.	2

2.	Let $X = \left\{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots\right\}$ and 'd' is the usual metric defined on X.	5
	Let $A = \left\{1, \frac{1}{3}, \frac{1}{5}, \dots, \frac{1}{2n-1}, \dots\right\}$ and $B = \left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \dots\right\}$. Find	
	distance between A and B.	

- 3. Prove that every open sphere is neighbourhood of each of its points.
- 4. Prove that every Cauchy sequence in a metric space is convergent if and only if 5 it has a convergent subsequence.
- 5. Prove that in a metric space (X, d), a subset A of X is closed iff A^c is open.

6. Show that
$$(\mathbb{R}^2, d)$$
 is a metric space where $d(x, y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$ 5
 $\forall x, y \in \mathbb{R}^2, x = (x_1, x_2), y = (y_1, y_2).$

5

5

GROUP-B (Full marks-20)

Answer Question number 7 and any three from the rest

7. (a) (b)	Show that the inverse of bilinear transformation is a bilinear transformation. Is the function $f(z) = xy + iy$ analytic everywhere?	2 2
(c)	Define cross ratio of four points z_1 , z_2 , z_3 and z_4 .	1
8.	Let f be analytic function in a region G. If any one of $\text{Re}(f)$, $\text{Im}(f)$, $ f $ is constant on G, then prove that f is constant on G.	5
9.	Define stereographic projection. What is the image of the point $z = -\frac{1}{2} + i\frac{1}{2}$ on the sphere $x^2 + y^2 + z^2 = 1$ under stereographic projection?	5
10.	Show that the composition of two bilinear transformation is a bilinear transformation.	5
11.	Determine $f(z) = u + iv$ by obtaining a conjugate of a given harmonic function $u(x, y) = y^3 - 3x^2y$.	5
12.	Let $f(z) = z ^2$. Show that the derivative of $f(z)$ exists only at the origin.	5

GROUP-C

	Answer any <i>two</i> questions	$5 \times 2 = 10$
13.	Prove that any two cyclic groups are isomorphic.	5
14.	Let $G = (\mathbb{R}, +)$, $G' = \{z \in \mathbb{C} : z = 1\}$ and $\phi = G \to G'$ is defined by	5
	$\phi(x) = \cos 2\pi x + i \sin 2\pi x , x \in \mathbb{R}$	
	Prove that ϕ is a homomorphism. Determine ker ϕ .	

- 15. A subgroup *H* of a group *G* is normal iff $x H x^{-1} = H$, $\forall x \in G$. 5
- 16. Suppose *M* and *H* are normal subgroups of a group *G* such that $M \cap H = \{e\}$. 5 Then show that every element *M* commutes with every element of *H* i.e., mh = hm, where $m \in M$ and $h \in H$.

____X____