

## UNIVERSITY OF NORTH BENGAL

B.Sc. Honours Part-III Examination, 2022

## Mathematics

## Paper-XIII

Theory of Statistic, Analytical Statics
New Syllabus
Time Allotted: 2 Hours
Full Marks: 50
The figures in the margin indicate full marks. All symbols are of usual significance.

## GROUP-A

## Answer Question No. 1 and any two from the rest

1. (a) What do you mean by an efficient estimator?
(b) If the lines $4 x+y=52$ and $x+y=32$ be the regression lines of $x$ on $y$ and of $y$ on $x$ respectively, then find the correlation coefficient.
(c) The mean and variance of a sample of size 400 from a normal population are found to be 18.35 and 3.25 respectively. Given $P(U>1.96)=0.025, U$ being a standard normal variate. Find $95 \%$ confidence interval for the population mean.
2. (a) Nine patients to whom a certain drug was administered, registered the following rise in blood pressure:

$$
3,7,4,-1,-1,6,-4,1,5
$$

Test the hypothesis that the drug does not raise blood pressure at $10 \%$ level of significance. Assume that the sample is from a normal population. Given $P(t>1.86)=0.05$ for eight degrees of freedom.
(b) Prove that the maximum likelihood estimate of the parameter $\alpha$ of a population having density function

$$
\frac{2}{\alpha^{2}}(\alpha-x) \quad, \quad 0<x<\alpha
$$

for a sample of unit size is $2 x, x$ being the sample value. Show also that the estimate is biased.
3. (a) For a large lot of freshly minted coins a random sample of size 50 is taken. The
mean weight of coins in the sample is found to be 28.57 gm . Assuming that the population standard deviation of weight is 1.25 gm , will it be reasonable to suppose that the population mean is 28 gm ?
(b) Obtain the maximum likelihood estimate of the parameter $p$ of the binomial

[^0]
#### Abstract




都

$$
2
$$ ( $N, p$ ) population for $n$ sample values.

4. (a) The random variables $X$ and $Y$ are jointly normally distributed and $U, V$ are defined by

$$
\begin{aligned}
& U=X \cos \alpha+Y \sin \alpha, \\
& V=-X \sin \alpha+Y \cos \alpha
\end{aligned}
$$

Show that $U$ and $V$ will be uncorrelated if

$$
\tan 2 \alpha=\frac{2 r \sigma_{X} \sigma_{Y}}{\sigma_{X}^{2}-\sigma_{Y}^{2}}
$$

where $r=$ correlation coefficient of $(X, Y), \sigma_{X}^{2}=\operatorname{var}(X)$ and $\sigma_{Y}^{2}=\operatorname{var}(Y)$.
(b) A dice is thrown 9000 times and a throw of 3 or 4 is observed 3240 times. Show that the dice cannot be regarded as an unbiased one and find the limits between which the probability of a throw of 3 or 4 lies.

## GROUP-B

## Answer Question No. 5 and any two from the rest

5. (a) Find the centre of gravity of a uniform arc of a circle. 2
(b) Show that a force and a couple cannot produce equilibrium. 2
(c) Write down the principle of virtual work for a single particle.
6. (a) Find the centre of gravity of the segment of a solid sphere of radius ' $a$ ', cut off
by a plane situated at a distance ' $c$ ' $(<a)$ from its centre.
(b) Find the equation of the central axis of any given system of forces.
7. (a) A thin hemispherical bowl of radius ' $b$ ' and weight ' $W$ ' rests in equilibrium on any sliding. Inside the bowl a small smooth sphere of weight $W_{1}$ is placed. Show that the equilibrium is unstable unless $W_{1}<W\left(\frac{a-b}{2 b}\right)$.
(b) A rectangular hexagon is composed of six equal heavy rods freely jointed together, and two opposite angles are connected by a string which is horizontal, one rod being in contact with a horizontal plane; at the middle point of the opposite rod is placed a weight $W_{1}$; if $W$ be the weight of each rod, show that the tension of the string is $\frac{3 W+W_{1}}{\sqrt{3}}$.
8. (a) Two forces act, one along the line $y=0, z=0$ and the other along the line $x=0, z=c$. As the forces vary, show that the surface generated by the axis of their equivalent wrench is $\left(x^{2}+y^{2}\right) z=c y^{2}$.
(b) Three forces $P, Q, R$ act along the sides of a triangle formed by the lines the resultant.

[^0]:    

