

'समानो मन्त्रः समितिः समानी' UNIVERSITY OF NORTH BENGAL B.Sc. Honours Part-III Examination, 2022

MATHEMATICS

PAPER-XIV

NEW SYLLABUS

Time Allotted: 2 Hours

Answer *all* questions:

1.

Full Marks: 50

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

	(a)	Define the degrees of freedom of a particle in motion in three-dimensional Euclidean space.	1	
	(b)	What is conservation of linear momentum?	1	
	(c)	Cite an example of kinematic constraints.	1	
2.		Answer any <i>three</i> questions:	4×3 = 12	
	(a)	What are generalized coordinates? Obtain generalized coordinates for a simple pendulum executing the SHM about the position of equilibrium.	4	
	(b)	Prove that the total kinetic energy of a system of particles about any point O is equal to the kinetic energy of the centre of mass assuming total mass acting at it plus the kinetic energy of motion about the centre of mass.	4	
	(c)	Write the equation of constants in Cartesian co-ordinates for the dynamical system: A pair of Cartwheels of radius R , the center of which are connected by a rigid shaft of length 'l' is allowed to roll without slipping down an inclined that makes an angle ' α ' with the horizontal.	4	
	(d)	Define non-conservative force. Find the potential energy corresponding to the gravitational force.	4	
	(e)	Deduce Galilean transformation from Newton's Second Law.	4	
GROUP-B				
3.		Answer any <i>two</i> questions:	$2 \times 2 = 4$	

- (a) Let A be the set of positive integers ≤ 30 and multiples of 4. Let B be the set of positive integers ≤ 30 and multiples of 6. Find $|A \cup B|$.
- (b) Find the Boolean function which represents the circuit and simplify, if possible:

(c) Find a closed form for the generating function $\{0, 0, 0, 1, 1, 1, 1, 1, \dots\}$.

2

2

B.Sc./Part-III/Hons./(1+1+1) System/MTMH-XIV/2022

- Answer any *four* questions: 4. $4 \times 4 = 16$ (a) Express the Boolean functions in both DNF and CNF of 4 f(x, y, z) = (x + y)(y + z)(z + x)(b) If a, b, c be three switches then draw a switching circuit representing 4 (a+b'+c)(a+bc')+bc and simplify, if possible. (c) Prove that for a bounded distributive lattice L complements, if exist, are unique. 4 (d) Write down dual of each statement: 4 (i) $(a \land b) \lor c = (b \lor c) \land (c \lor a)$ (ii) $(a \land b) \lor a = a \land (b \lor a)$. 4 (e) Solve the recurrence relation $a_{n+2} - 3a_{n+1} + 2a_n = 0$ by the generating function method with initial conditions $a_0 = 2$ and $a_1 = 3$.
 - (f) State Pigeonhole principle. Show that if any five members from 1 to 8 are chosen, 4 then two of them will add to 9.

GROUP-C

5.		Answer any <i>three</i> questions:	$5 \times 3 = 15$
	(a)	Prove that a graph is bipartite if and only if it contains no odd cycles.	5
	(b)	Show that K_n is a planar graph for $n \le 4$ and non-planar for $n \ge 5$.	5
	(c)	If a simple regular graph has n vertices and 24 edges, find all possible values of n .	5
	(d)	Find the minimal spanning tree in the following using Prim's algorithm:	5

- (e) From the following graphs, find a graph
 - (i) having Euler's circuit, but not Hamiltonian circuit.
 - (ii) having Hamiltonian circuit, but not Euler's circuit.

