UNIVERSITY OF NORTH BENGAL

B.Sc. Honours Part-III Examination, 2022

Mathematics

Paper-XIV

New Syllabus
Full Marks: 50
Time Allotted: 2 Hours

उत्तर बन्व समानो मन्त्र: समिति: समानी'

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

1. Answer all questions:
(a) Define the degrees of freedom of a particle in motion in three-dimensional Euclidean space.
(b) What is conservation of linear momentum?
(c) Cite an example of kinematic constraints.
2. Answer any three questions:
(a) What are generalized coordinates? Obtain generalized coordinates for a simple pendulum executing the SHM about the position of equilibrium.
(b) Prove that the total kinetic energy of a system of particles about any point O is equal to the kinetic energy of the centre of mass assuming total mass acting at it plus the kinetic energy of motion about the centre of mass.
(c) Write the equation of constants in Cartesian co-ordinates for the dynamical system: A pair of Cartwheels of radius R, the center of which are connected by a rigid shaft of length ' l ' is allowed to roll without slipping down an inclined that makes an angle ' α ' with the horizontal.
(d) Define non-conservative force. Find the potential energy corresponding to the gravitational force.
(e) Deduce Galilean transformation from Newton's Second Law.

GROUP-B

3. Answer any two questions:
(a) Let A be the set of positive integers ≤ 30 and multiples of 4 . Let B be the set of positive integers ≤ 30 and multiples of 6 . Find $|A \cup B|$.
(b) Find the Boolean function which represents the circuit and simplify, if possible:

(c) Find a closed form for the generating function $\{0,0,0,1,1,1,1,1, \cdots \cdots\}$.

B.Sc./Part-III/Hons./(1+1+1) System/MTMH-XIV/2022

4. Answer any four questions:
(a) Express the Boolean functions in both DNF and CNF of

$$
f(x, y, z)=(x+y)(y+z)(z+x)
$$

(b) If a, b, c be three switches then draw a switching circuit representing

$$
\left(a+b^{\prime}+c\right)\left(a+b c^{\prime}\right)+b c \text { and simplify, if possible. }
$$

(c) Prove that for a bounded distributive lattice L complements, if exist, are unique.
(d) Write down dual of each statement:
(i) $(a \wedge b) \vee c=(b \vee c) \wedge(c \vee a)$
(ii) $(a \wedge b) \vee a=a \wedge(b \vee a)$.
(e) Solve the recurrence relation $a_{n+2}-3 a_{n+1}+2 a_{n}=0$ by the generating function method with initial conditions $a_{0}=2$ and $a_{1}=3$.
(f) State Pigeonhole principle. Show that if any five members from 1 to 8 are chosen, then two of them will add to 9 .

GROUP-C

5. Answer any three questions:
(a) Prove that a graph is bipartite if and only if it contains no odd cycles.
(b) Show that K_{n} is a planar graph for $n \leq 4$ and non-planar for $n \geq 5$.
(c) If a simple regular graph has n vertices and 24 edges, find all possible values of n.
(d) Find the minimal spanning tree in the following using Prim's algorithm:

(e) From the following graphs, find a graph
(i) having Euler's circuit, but not Hamiltonian circuit.
(ii) having Hamiltonian circuit, but not Euler's circuit.

